UNIVERSITY OF THE PUNJAB

Part – I A/2016 Examination: – B.A./B.Sc.

Roll No.

Subject: Mathematics A Course-I PAPER: Calculus and Analytical Geometry

TIME ALLOWED: 3 hrs. MAX, MARKS: 100

NOTE: Attempt SIX questions by selecting TWO questions from Section-I, TWO questions from Section-II, ONE questions from Section-III and ONE question from Section-IV.

SECTION-I

Q.1. (a): Solve the inequality
$$\frac{2x}{x+2} \ge \frac{x}{x-2}$$

9

(b): Let
$$f(x) = \begin{cases} x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

8

Discuss the continuity of f at x=0

Q.2. (a): Find
$$\frac{dy}{dx}$$
 if $y = \arctan\left(\frac{x \sin \alpha}{1 - x \cos \alpha}\right)$

9

(b): Use differentials to find approximate value of tan 29° 8

Q.3 (a): If $y = (arc \sin x)^2$, show that $(1-x^2) y^n - xy^n - 2 = 0$, Differentiate this equation n times and find the value of y^n at x=0

(b): If
$$x > 0$$
, prove that $x - \ln(1 + x) > \frac{x^2}{2(1+x)}$

Q.4...(a): Find by Maclaurin formula, the first four terms of expansion of

$$f(x) = e^{ax} \cos bx$$
 and remainder after n terms

8

(b):Use L' hospital 'rule to prove that
$$\lim_{x\to\infty}\left[\frac{a^{1/x}+b^{1/x}}{2}\right]^x=\sqrt{ab}$$
 a>0 .b>0

SECTION-II

Q.5. (a) Integrate the following ?

5,5, 7

(i)
$$\int sec^3x dx$$

(ii)
$$\int \frac{dx}{(1+x)\sqrt{x^2-1}}$$

(iii)
$$\int \frac{dx}{ax^n + bx}$$

Q.6. (a): Prove that

8

$$\int_0^{\pi} \frac{x \sin x}{1 + \sin x} dx = \frac{\pi^2}{2} - \pi$$

Evaluate
$$\int \frac{x^3}{\sqrt{1-x^2}} dx$$

- Q.7 (a): Show that the pedal equation of the astroid x=a $cos^3\theta$, y=a $sin^3\theta$ is $r^2=a^2-3p^2$ 9,8
- (b): show that tangents to cardioids r = a (1+ cos θ) at points $\theta = \frac{\pi}{3}$ and $\theta = \frac{2\pi}{3}$ are respectively parallel and perpendicular to initial line
- Q.8 (a): If $p = x \cos\theta + y \sin\theta$ touches the curve $\left(\frac{x}{a}\right)^{\frac{n}{n-1}} + \left(\frac{y}{b}\right)^{\frac{n}{n-1}} = 1$.

 Prove that $p^n = (a \cos\theta)^n + (b \sin\theta)^n$
- (b): Prove that the area enclosed by parallelogram formed by the tangents at end of conjugate diameters of ellipse is constant

SECTION-III

- Q.9 (a): Find the asymptotes of the curve $x^2y + xy^2 + xy + y^2 + 3x = 0$ 8
 - (b): Find the relative maxima and minima of $r = 1 \cos \theta 8$
- Q.10 (a): Show that the intrinsic equation of the parabola

$$x^2$$
 =4ay is S=atan α sec α +aln(tan α +sec α) 8

(b): Prove that radius of curvature at point (2a,2a) on the curve $x^2y = a(x^2+y^2)$ is 2a

SECTION-IV

- Q.11 (a): The direction cosines of two straight lines are given by the equations l + m + n = 0 and $l^2 + m^2 + n^2 = 0$. Find the angle between them.
- (b): Find equation of the plane that passes through the points (3,2,-1) and (1,-3,4) and contains the line parallel to 2i-4j+3k 8,8
- Q.12 (a): Find an equation of the sphere passing through the Points (0,-2,-4), (2,-1,-1) and having its center on the st-line 2x 3y = 0 = 5y + 2z
 - (b): Find the direction of Qibla of Badshahi Mosque, Lahore, Latitude = $32^{0}35.4'N$ and longitude = $74^{0}18.7'E$