INLYERSITY OF THE PUNJAB

A/2015

Roll No. ..

Examination: - B.A./B.Sc.

TIME ALLOWED: 3 hrs.

Subject: Mathematics General PAPER: A

MAX. MARKS: 100

NOTE: Attempt any SIX questions by selecting TWO questions from Section - I, TWO questions from Section - II, ONE question from Section - III and ONE question from Section - IV.

Section-I

Q. 1. (a) Solve the inequality

8+9

$$\frac{2x}{x+2} \ge \frac{x}{x-2}$$

(b) $y = \sin(a \ arc \sin x)$, prove that

$$(1-x^2)y^{(n+2)} = (2n+1)xy^{(n+1)} + (n^2-a^2)y^{(n)}$$

Q. 2. (a) Discuss the validity of Rolle's Theorem for the function $f(x) = x(x+3)e^{\frac{-x}{2}}$ on [-3, 0] and also find c such that f'(c) = 0

8+9

Evaluate: $\lim_{x\to 0} \frac{\sin x - \ln(e^x \cos x)}{x \sin x}$ (b)

Find equations of the "asymptotes" of the curve Q. 3. (a) $r \sin n\theta = a$

8+9

(b) Find the positional nature of the multiple points on the curve $x^2(x-y) + y^2 = 0$

Q. 4. (a). Find the radius of curvature at any point on the curve $r^n = a^n \sin n\theta$

(b) Find the intervals in which the curve:

8+9

$$y = (x^2 + 4x + 5)e^{-x}$$

Faces upward or downward. Also find its points of inflection.

Section-II

Q. 5. Evaluate the integrals:

5, 6, 6

i.
$$\int \frac{\sin x}{\sin 3x} \, dx$$

ii.
$$\int \frac{x\sqrt{1+x}}{\sqrt{1-x}} dx$$

iii.
$$\int \frac{1}{\tan x - \sin x} dx$$

- (b) Use Simpson's rule to evaluate: $\int_0^1 \frac{1}{1+x^2} dx$ with n = 4
- Q. 7. (a) Find the area of the smaller segment cut from a circular disc of radius "a" by a chord at a distance "b" from the centre, (a > b).
 - (b) Sketch the graph of the curve $r = -a(1 + \cos\theta)$, a > 0
- Q. 8. (a) If $\frac{b}{a}$ is small, then calculate the perimeter of the limacon $r = a + b\cos\theta$
 - (b) Find the surface area generated by revolving the line segment between $(r_1, 0)$ and (r_2, h) about the y axis

Section-III

- Q. 9. (a) Test the series $\sum_{2}^{\infty} \frac{1}{n(lnn)^p}$ converges or diverges.
 - (b) Test the series for absolute convergence, conditional convergence or divergence $\sum_{1}^{\infty} \frac{(-1)^{n}(n+2)}{n(n+1)}$
- Q. 10. (a) If x > 0, prove that the series $\sum_{1}^{\infty} \frac{1.3.5....(2n-1)}{1.4.7...(3n-2)} x^n$ converges for $x < \frac{3}{2}$ 8+8
 - (b) Find the interval and radius of convergence of $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{n(\ln n)^2}$

Section-IV

Q. 11. (a) Find
$$\frac{d^2y}{dx^2}$$
 if $x\sqrt{1-y^2} + y\sqrt{1-x^2} = a$ 8+8

(b) Use differentials to approximate $\sqrt{49.5}$

Q. 12. (a) If
$$f(x,y) = x^y + y^x$$
, then verify that $f_{xy} = f_{yx}$ 8+8

(b) Find the extreme values of the function

$$f(x,y) = \frac{1}{x} + xy - \frac{8}{y}$$

Available at www.mathcity.org