UNIVERSITY OF THE PUNJAB

Part – I A/2016 Examination:- B.A./B.Sc.

Roll No.

Subject: Mathematics General-I

PAPER: Calculus (Differential and Integral Calculus)

TIME ALLOWED: 3 hrs. MAX. MARKS: 100

Attempt any SIX questions by selecting TWO questions from Section-I, TWO questions from Section-II, ONE question from Section-III and ONE question from Section-IV.

Section-I

Q. No. 1(a)

i. Solve the inequality
$$|x^2 - x + 1| > 1$$

4-1-4

ii. Examine the continuity of

$$f(x) = \begin{cases} \frac{x^2 - a^2}{x - a} & \text{if } 0 \le x < a \\ a & \text{if } x = a \\ 2a & \text{if } x > a \end{cases}$$

at x = a

(b) 4+5

i. Evaluate
$$\lim_{x\to\infty} \frac{x+\sin x}{x}$$

ii. Let $\delta > 0$ and $a \in R$. Show that $a - \delta < x < a + \delta$ if and only if $|x - a| < \delta$

Q. No. 2(a) Let
$$f(x) = \begin{cases} \sin 2x & \text{if } 0 < x \le \frac{\pi}{6} \\ ax + b & \text{if } \frac{\pi}{6} < x \le 1 \end{cases}$$
 8+9

Derive the values of a and b if f(x) is continuous and differentiable at $x = \frac{\pi}{4}$.

(b) If
$$y = (\sin^{-1} x)^2$$
, prove that $(1 - x^2)y'' - xy' - 2 = 0$

Differentiate this equation n times and find $y^{(n)}(0)$.

Q. No. 3(a) If
$$f(x) = -\frac{\cos x}{2\sin^2 x} + \frac{1}{2} \ln \tan \left(\frac{x}{2}\right)$$
 8+9

Then show that $f'(x) = cosec^3x$

(b) The side of a cube is measured with a possible error of $\pm 2\%$. Find the percentage error in the surface area of one the cube.

. Q. No. 4(a) Evaluate the given limits

4+4

i.
$$\lim_{x\to 0} \left(\frac{1}{x \sin^{-1} x} - \frac{1}{x^2} \right)$$
 ii. $\lim_{x\to 0} (\tan x)^{\sin 2x}$

(b) Prove that
$$f(x) = 2x - tan^{-1}x - \ln(x + \sqrt{x^2 + 1})$$
 is an increasing function on $[0, \infty[$

Section-II

Q. No. 5(a) Evaluate
$$\int \frac{1}{a+b\cosh x} dx$$
 8+9

(b) Evaluate
$$\int \frac{1}{(x^2+4x+5)\sqrt{x+2}} dx$$

Q. No. 6(a) Evaluate
$$\int_0^{\pi} \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$$
 8+9

(b) Obtain a reduction formula for
$$\int \frac{x^n}{\sqrt{1-x^2}} dx$$
 and hence evaluate $\int \frac{x^3}{\sqrt{1-x^2}} dx$

Q. No. 7(a) Analyze and graph the conics represented by
$$xy = 1$$
 8+9

(b) If
$$PFP'$$
 and QFQ' are two perpendicular focal chords of a conic, prove that
$$\frac{1}{|PF|,|FP'|} + \frac{1}{|QF|,|FQ'|}$$
, is constant.

Q. No. 8(a) Find the pedal equation of the curve
$$\frac{l}{r} = 1 + e \cos \theta$$
 849

(b) If
$$x = a \cos g(t)$$
, $y = b \sin g(t)$, prove that: $xy^2 \frac{d^2y}{dx^2} = b^2 \frac{dy}{dx}$

Section-II1

Q. No. 9(a) Find the relative maxima and minima of y if
$$r = 1 - \cos \theta$$
 8+8

(b) Find equations of the tangents at the multiple points of the curve

$$(y-2)^2 = x(x-1)^2$$

Q. No. 10(a) Find the point on the curve $y = \ln x$ where the curvature K is maximum

(b) Find the envelope of the family of lines $y = mx + \sqrt{a^2m^2 + b^2}$, m being the parameter. 8+8

Section- IV

Q. No. 11(a) Verify that
$$f_{xy} = f_{yx}$$

$$f(x,y) = x^y + y^x$$
8+8

(b) Find
$$\frac{d^2y}{dx^2}$$
 if $x^3 + y^3 = 3axy$

Q. No. 12(a) Show that the ellipsoid
$$\frac{x^2}{12} + \frac{y^2}{16} + \frac{z^2}{12} = 1$$
 and the hyperboloid 8+8 $\frac{y^2}{3} - x^2 - z^2 = 1$ intersect orthogonally.

(b) Evaluate
$$\int_0^a \int_0^{\sqrt{a^2-y^2}} \int_0^{\sqrt{a^2-x^2-y^2}} x \, dz \, dx \, dy$$

Available at www.mathcity.org