Group

(Abelian Group)

w.r.t

rision"

By # Prof: Fazal Abbas Sajid

- ➤ Many Students consider that there is no group w.r.t (Subtraction and Division)
- Even that Google Search shows these wrong informations

Remember Dear Students:

- ❖ Set {0} is abelian Group w.r.t "-"
- ❖ Set {1} is abelian Group w.r.t "÷"

Google does not know these important informations

I say "Google koi hadees to nhi"

I also say "Google is just artificial Storage (USB)"

ALLAH PAK ka ata kya gya Dimagh (Brain) to nhi

Google can show just that results only which are uploaded by any person on Google

> I am infinity times grateful to

ALLAH ALMIGHTY and MUHAMMAD (***********)

to become me 1st Person to introduce these important hidden informations 1st time in the World

Regards: Prof. Fazal Abbas Sajid

Proof of Group

(Abelian Group) w.r.t "Subtraction" "Division"

By # Prof:Fazal Abbas Sajid

Alhamdulillah I am 1st Person in the World who introduced this concept 1st Time in the World

Abelian group w.r.t "Subtraction"

Let $A = \{0\}$

G1 # Clouser Law:

As $0 - 0 = 0 \in A$ hence Clouser Law hold

G2 # Associative Law:

$$(0-0)-0=0-(0-0)$$

Hence Associative Law hold

G3 # Existence of Identity Element:

"0" is subtractive identity and $0 \in A$,

s.t
$$0-0=0=0-0$$

Hence subtractive identity exist in A

G4 # Existence of Inverse of Element:

"0" is subtractive inverse of itself,

s.t
$$0 - 0 = 0 = 0 - 0$$

Hence subtractive inverse of each exist in A

G5 # Commutative Law:

as
$$0 - 0 = 0 - 0$$

Hence commutative law hold

G1 to G4 indicates Set A is group w.r.t "-"

G1 to G5 indicates Set A is abelian group w.r.t " - "

Abelian group w.r.t "Division"

Let $B = \{1\}$

G1 # Clouser Law:

As $1 \div 1 = 1 \in B$ hence Clouser Law hold

G2 # Associative Law:

$$(1 \div 1) \div 1 = 1 \div (1 \div 1)$$

Hence Associative Law hold

G3 # Existence of Identity Element:

"1" is divisive identity and $1 \in B$,

s.t
$$1 \div 1 = 1 = 1 \div 1$$

Hence divisive identity exist in B

G4 # Existence of Inverse of Element:

"1" is divsive inverse of itself,

s.t
$$1 \div 1 = 1 = 1 \div 1$$

Hence subtractive inverse of each exist in B

Commutative Law:

$$as 1 \div 1 = 1 \div 1$$

hence commutative law hold

G1 to G4 indicates Set B is group w.r.t " ÷ "

G1 to G5 indicates Set B is abelian group w.r.t " ÷ "