Mock Test-2 For Lecturer (Mathematics)

Name An effort by: Akhtar Abbas

1. If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ equals:

A. $\frac{lnx}{1+lnx}$ B. $\frac{lnx}{(1+lnx)^2}$ C. $\frac{1+lnx}{lnx}$ D. $\frac{(1+lnx)^2}{lnx}$

2. $\lim_{x\to 0} (\cot x)^{\sin x}$ equals:

A. 0 B. -1 C. 1

3. If a function f satisfies all axioms of Mean Value Theorem on [a,b] and $|f'(x)| \leq M$ for all $x \in [a,b]$, then:

A. $|f(b) - f(a)| \le M(a - b)$ B. $|f(b) - f(a)| \ge M(a - b)$ C. $|f(b) - f(a)| \le M(b - a)$ D. $|f(a) - f(b)| \ge M(b - a)$

4. $\int \frac{dx}{x\sqrt{a^2+x^2}}$ equals:

5. The maximum error formula in Simpson's rule is $Error \leq \frac{M(b-a)^5}{180n^4}$, where M equals:

A. |f'(x)| B. |f''(x)| C. |f'''(x)| D. $|f^{(4)}(x)|$

6. For a > 0, $r = asin\theta$ represents a circle of radius:

A. $\frac{a}{2}$ B. a C. 2a D. a^2

7. Distance of the point (3, -1, 2) from the plane 2x + y - z = 0 is:

A. $\frac{3}{2}$ B. $\frac{4}{\sqrt{6}}$ C. $\frac{6}{2}$ D. $\frac{\sqrt{6}}{4}$

8. The acute angle between the planes 2x + y - z = 5 and x - y - 2z = -5 is:

A. $\frac{\pi}{2}$ B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{6}$

9. The function $f(x,y,z) = \frac{\sqrt{x} + \sqrt{y} + \sqrt{z}}{x+y}$ is homogeneous of degree:

A. $\frac{1}{2}$ B. 2 C. $-\frac{1}{2}$ D. none of these

10. If D is the region in the first quadrant between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$, (0 < a < b), then $\int \int_D \frac{dxdy}{x^2 + y^2}$ equals:

A. $\frac{\pi}{lnb}$ B. $\frac{\pi}{2}ln(b)$ C. $\frac{\pi}{2}ln(a)$ D. $\frac{\pi}{2}ln(\frac{b}{a})$

11. The order of the differential equation $\frac{d^2y}{dx^2} + 5x(\frac{dy}{dx})^3 - 4y + e^x = 0$ is:

A. 0 B. 1 C. 2 D. 3

12. Which of the following is a non-linear differential equation?

A. $(1-x)y' + 2y = e^x$ B. $y'' + \sin y = 0$ C. y''' + y = 0 D. $y'' + (\sin x)y = 5$

13. The differential equation N(x,y)dx + M(x,y)dy = 0 is exact if:

A.
$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$
 B. $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ C. Both (A) and (B) D. None of these

14. The Wronskian $W(e^{3x}, e^{-3x})$ equals:

15. If L^{-1} is the inverse Laplace transform, then $L^{-1}(\frac{t}{t^2+k^2})$ equals:

A.
$$sinks$$
 B. $cosks$ C. e^s D. $log(s)$

16. For a scalar point function ψ , $\nabla \times (\nabla \psi)$ equals:

A. 0 B.
$$\psi$$
 C. ψ^2 D. $\psi/2$

17. For a vector point function A, $\nabla(\nabla \cdot A) - \nabla^2 A$ equals:

A.
$$\nabla(\nabla \cdot A)$$
 B. $\nabla \times (\nabla \times A)$ C. $\nabla (A \cdot \nabla)$ D. $\nabla \cdot (\nabla \times A)$

18. The volume of a tetrahedron with sides $\vec{a}, \vec{b}, \vec{c}$ is:

A.
$$\frac{1}{2}|\vec{a} \times \vec{b} \cdot \vec{c}|$$
 B. $\frac{1}{6}|\vec{a} \times \vec{b} \cdot \vec{c}|$ C. $\frac{1}{2}|\vec{a} \times \vec{c} \cdot \vec{b}|$ D. $\frac{1}{2}|\vec{c} \times \vec{b} \cdot \vec{a}|$

19. For vectors \vec{a}, \vec{b} and \vec{c} , which of the following is true?

A.
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$$
 B. $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ implies $\vec{b} = \vec{c}$ C. $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ implies $\vec{b} = \vec{c}$

D. None of these

20. If
$$\frac{d\vec{r}(t)}{dt} = 0$$
 on an interval $[a, b]$, then $\vec{r}(t)$ is ... on $[a, b]$.

21. If \vec{t}, \vec{n} and \vec{b} are tangent, normal and bi-normal vectors respectively, then for what value of X,

$$\begin{bmatrix} \vec{t} \\ \vec{n}' \\ \vec{b}' \end{bmatrix} = X \begin{bmatrix} \vec{t} \\ \vec{n} \\ \vec{b} \end{bmatrix}? \quad \text{Akhtar Abbas}$$

A.
$$X = \begin{bmatrix} 0 & \kappa & 0 \\ \kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix}$$
 ecture $\begin{bmatrix} 0 & -\kappa & 0 \\ -\kappa & 0 & \tau & 0 \end{bmatrix}$ **C.** $X = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & -\tau & 0 \end{bmatrix}$ D. $X = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix}$$

22. The osculating plane to a curve is parallel to:

A.
$$\vec{t}$$
 and \vec{n} B. \vec{n} and \vec{b} C. \vec{b} only D. \vec{n} only

23. If for a curve, $\frac{\kappa}{\tau}$ is a constant, then curve is a:

24. The rotation index of a simple closed curve is:

A. 0 B. 1 C.
$$-1$$
 D. ± 1

25. For any two sets A and B, n(A - B) equals:

A.
$$n(A) - n(A \cap B)$$
 B. $n(A) - n(A \cup B)$ C. $n(B) - n(A \cap B)$ D. $n(B) - n(A \cup B)$

26. Let R be a relation on a set A with n elements, then $R^1 \cup R^2 \cup ... \cup R^N$ is ... closure of R.

A. reflexive B. symmetric C. transitive D. skew-symmetric

27. A proper subset of a countable set is:

A. finite B. co-finite C. infinite D. countable

28. If for any two functions f and g, $g \circ f$ is onto, then:

A. g is one-one B. g is onto C. f is one-one D. f in onto

29. The set $\{x \in \mathbb{Q} : x > 0 \text{ and } 2 < x^2 < 3\}$ has:

A. no supremum B. no infimum C. Both A and B D. None of these

30. The smallest positive divisor d > 1 of an integer n is:

A. prime B. composite C. coprime D. even

31. When 5^{48} is divided by 12, the remainder is:

A. 0 B. 1 C. 5 D. 10

32. When 1! + 2! + 3! + ... + 899! is divided by 3, then the remainder is:

A. 0 B. 1 C. 2 D. None of these

33. If for any integers a, b, c, m and k > 1, $a^k \equiv b^k \pmod{m}$, then which of the following is not true in general?

A. $a^k + c \equiv b^k + c \pmod{m}$ B. $a^k c \equiv b^k c \pmod{m}$ C. $a \equiv b \pmod{m}$ D. $b^k \equiv a^k \pmod{m}$

34. Any two Sylow p-subgroups of a group G are:

A. commutative B. finite C. conjugate D. normal

35. For $n \geq 3$, A_n is generated by:

A. 2-cycles B. 3-cycles C. 4-cycles D. None of these

36. The order of an element $\frac{p}{q} + \mathbb{Z}$ in the group $\frac{\mathbb{Q}}{\mathbb{Z}}$ is:

A. p B. q C. infinite D. 1

37. How many subgroups does the group $\mathbb{Z}_3 + \mathbb{Z}_{16}$ have?

A. 6 B. 10 C. 12 D. 24

38. The rank of an $m \times n$ matrix is:

A. m B. n C. min(m, n) D. $\leq min(m, n)$

39. Suppose the system AX = 0 has 20 unknowns and its solution space is spanned by 6 linearly independent vectors, then which of following can't be the order of A?

A. 15×20 B. 6×20 C. 14×20 D. 16×20

40. Suppose that a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ has kernel spanned by one nonzero vector. Then what is the dimension of range of T?

A. 0 B. 1 C. 2 D. 3

41. The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x-y,x+2y) is:

A. one-one B. onto C. bijective D. None of these

42. For what value of k, the roots of the equation $x^3 - 6x^2 + kx + 64 = 0$ are in geometric progression?

A. -10 B. -18 C. -24 D. 12

43. If f(1) = 2 and $f(n-1) = f(n) - \frac{1}{2}$ for all integers n > 1, then f(101) equals:

A. 49 B. 50 C. 51 D. 52

44. If |S| = n, then the number of one-one functions from S onto S is:

A. n! B. n^2 C. n^n D. 2^n

45. If V_1 and V_2 are 6 dimensional subspaces of a 10 vector space V, what is the smallest possible dimension that $V_1 \cap V_2$ can have?

A. 1 B. 2 C. 3 D. 4

46. A fair coin is tossed 8 times. What is the probability that more of the tosses will results in heads than will results in tails?

A. $\frac{93}{256}$ B. $\frac{23}{64}$ C. $\frac{1}{3}$ D. $\frac{1}{4}$

47. For every set S and every metric d on S, which of the following is a metric on S?

A. 4+d B. e^d-1 C. $d-\sqrt{d}$ D. \sqrt{d}

48. If f(z) is an analytic function that maps the entire plane into the real axis, then the imaginary axis must be mapped onto:

A. the entire real axis B. a point C. a ray D. the empty set

49. Let $I \neq A \neq -I$, where I is the identity matrix. If $A = A^{-1}$, then the trace of A is:

A. -1 B. 0 C. 1 D. 2 = 1

50. For a positive integer m, $\Gamma(m+1)$ equals:

A. m+1 B. m C. (m+1)! D. m!

Best of Luck.