Sample Paper 02: Public Service Commission

Available at: http://www.mathcity.org/ppsc

This is a sample paper for the post of Lecturer or Subject Specialist or any other equivalent position.

Note: Please choose the most appropriate choice.

Gen	eral Knowledge
mat	
//	ne first human who travelled into space was
(A	A) Neil Armstorng (B) Yuri Gararin (C) Sergei Korolev (D) John Glenn
2. W	Thich from the following countries has no armed forces?
(A	A) Niger (B) Iceland (C) Landon (D) Nigeria
2 1	
//	aliban opened their political office in
(A	A) Musqat (B) Dubai (C) Doha (D) Riyadh
4. —	— has the world's largest natural gas reserves
(A	A) Russia (B) Iran (C) Pakistan (D) Canada
E C	promite is found in Deliston in the case of
	aromite is found in Pakistan in the area of:
(A	A) Multan (B) Karachi (C) Lahore (D) Muslim bagh
6. Tł	ne number of oil refineries working in Pakistan are:
(A	a) 6 (B) 4 (C) 7 (D) 8
7. Tł	ne areas important for mineral wealth in Pakistan is \ are:
(A	A) Areas of Waziristan (B) Chitral (C) Northern Eastern Balochistan (D) All of
th	em
0 Tl	so highest elecion of Delictor in
	ne highest glacier of Pakistan is:
(A	A) Butura (B) Finland (C) Hisper (D) Siachen
9. Co	ontract to operate Gwadar port was given to ——
(A	A) Landon (B) United State (C) Dubai (D) China
10. M	uhammad-bin-Qasim entered Sindh in
	a) 512 AD (B) 612 AD (C) 712 AD (D) 812 AD
(1.1	
11. Th	ne Head Office of Institute of Chartered Accountants of Pakistan (ICAP) is in
(A	A) Islamabad (B) Los Multan (C) Lahore (D) Karachi

- 12. The largest sources of electricity in Pakistan is
 (A) Geo Energy (B) Coal Energy (C) Thermal (
- 13. The total length of Karachi-Lahore Motorway is
 (A) 1,100km (B) 1,000km (C) 1,600km (D) 1,400km
- 14. Kalabagh is famous for the mineral of:(A) Stones (B) Salt (C) Iron (D) Sulphur
- 15. How many angels are mentioned in the Holy Quran
 (A) 7 (B) 9 (C) 4 (D) 5
- 16. Which Surah is known as the door to the Quran?

 (A) Baqarah (B) Fatihah (C) Ikhlas (D) Yaseen
- 17. Which pass connects Pakistan and Afghanistan
 (A) Tochi Pass (B) Khyber Pass (C) Khunjerab Pass (D) Gomal Pass
- 18. Which Surah is on the name of tribe of Holy Prophet
 (A) Quraish (B) Taha (C) Luqman (D) Al-Fatir
- 19. The effective Zakat system can ensure the elimination of?(A) Poverty (B) Interest (C) Class Distribution (D) none
- 20. The world's oldest written language is:(A) Japanese (B) Chinese (C) Urdu (D) Latin

Mathematics

- 21. Number of conjugacy classes of cyclicgroup of order 6 is (A) 1 (B) 2 (C) 3 (D) 6
- 22. Which of the following is an ideal of \mathbb{R} (A) \mathbb{Z} (B) $\{0\}$ (C) \mathbb{C} (D) \mathbb{Q}
- 23. Which of the following is a field? $(A) \ \{a+b\sqrt{2}: a,b\in\mathbb{Q}\} \quad (B) \ \mathbb{Q}\backslash 0 \quad (C) \ \mathbb{Z} \quad (D) \ \mathbb{Z}_6$
- 24. Let $\phi: \mathbb{Z} \to \mathbb{Z}_5$ be such that $\phi(a) = a \pmod{5}$. Then $Ker(\phi) = ----$ (A) $\{0\}$ (B) $\{0, \pm 5, \pm 10, ...\}$ (C) \mathbb{Z}_5 (D) \mathbb{Z}
- 25. The A.P. whose nth term is 2n-1 is (A) -1,3,5,... (B) 2,4,6,... (C) 1,3,5,... (D) 0,3,5,...
- 26. The number of proper ideals of \mathbb{Z}_{17} is (A) 0 (B) 1 (C) 2 (D) 3

27. Which of the following is a division Ring?

(B)
$$(\mathbb{E}, +, .)$$

(C)
$$(\mathbb{Q},+,.)$$

(A)
$$(\mathbb{Z}, +, .)$$
 (B) $(\mathbb{E}, +, .)$ (C) $(\mathbb{Q}, +, .)$ (D) $(\mathbb{Z}_6, \oplus_6, \odot_6)$

28.
$$\int_{-1}^{2} (x + |x|) dx =$$

29. x = 6 in \mathbb{R}^3 represents a

30. Kernel of $T: \mathbb{R}^3 \to \mathbb{R}^3$, where T(x, y, z) = (x, y, 0), is

31. Dimension of $\operatorname{Hom}(\mathbb{R}^3,\mathbb{R}^4) =$

32. Dimension of $\operatorname{Hom}(M_{2,4}, P_2(t)) = -$

$$(C)$$
 16

33. A dice is thrown. The probability that the dots on the top are prime numbers or odd (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) 1 (D) $\frac{5}{6}$

(A)
$$\frac{1}{3}$$

(B)
$$\frac{2}{3}$$

(D)
$$\frac{5}{6}$$

34. A coin is tossed 4 times in succession. The probability that at least one head occurs is (A) $\frac{1}{16}$ (B) $\frac{4}{16}$ (C) $\frac{12}{16}$ (D) $\frac{15}{16}$

(A)
$$\frac{1}{16}$$

(B)
$$\frac{4}{16}$$

(C)
$$\frac{12}{16}$$

(D)
$$\frac{10}{16}$$

35. Number of necklaces made from 9 beads of different colors is

(A)
$$\frac{8!}{2}$$

36. Period of $3\cos\frac{x}{5}$ is ——

(A)
$$2\pi$$
 (B) $\frac{2\pi}{5}$ (C) 6π

(D)
$$10\pi$$

37. Range of $\sec^{-1} x$ is —

(A)
$$[0, \pi]$$

(B)
$$[0,\pi]\setminus\left\{\frac{\pi}{2}\right\}$$

(A)
$$[0,\pi]$$
 (B) $[0,\pi] \setminus \left\{\frac{\pi}{2}\right\}$ (C) $[-\frac{\pi}{2},\frac{\pi}{2}]$ (D) $[-\frac{\pi}{2},\frac{\pi}{2}] \setminus \{0\}$

38. Solution set of $\sin x \cos x = \frac{\sqrt{3}}{4}$ is

(A)
$$\{\frac{\pi}{6} + n\pi\} \cup \{\frac{\pi}{3} + n\pi\}$$

(B)
$$\{\frac{\pi}{2} + 2n\pi\} \cup \{\frac{2\pi}{2} + 2n\pi\}$$

(A)
$$\{\frac{\pi}{6} + n\pi\} \cup \{\frac{\pi}{3} + n\pi\}$$
 (B) $\{\frac{\pi}{3} + 2n\pi\} \cup \{\frac{2\pi}{3} + 2n\pi\}$ (C) $\{\frac{\pi}{6} + 2n\pi\} \cup \{\frac{5\pi}{6} + 2n\pi\}$

(D)
$$\{\frac{\pi}{12} + n\pi\} \cup \{\frac{5\pi}{12} + n\pi\}$$

39. $(\cot^2 \phi - 1)(\sin^2 \phi + 1) = \dots$

(A)
$$1 - \sin^2 \phi$$

(B)
$$1 + \sin^2 \phi$$

(A)
$$1 - \sin^2 \phi$$
 (B) $1 + \sin^2 \phi$ (C) $\cos 2\phi - \sin 2\phi$ (D) All

40. Which of the following is tautology

(A)
$$\mathfrak{p} \rightarrow \sim \mathfrak{q}$$

(B)
$$(\mathfrak{p} \to \mathfrak{q}) \cap (\mathfrak{p}\mathfrak{q})$$

$$(A) \hspace{0.1cm} p \to \sim q \hspace{0.5cm} (B) \hspace{0.1cm} (p \to q) \cap (pq) \hspace{0.5cm} (C) \hspace{0.1cm} p \to q \leftrightarrow \sim q \to \sim p \hspace{0.5cm} (D) \hspace{0.1cm} p \cap \sim p$$

(D)
$$\mathfrak{p} \cap \sim \mathfrak{p}$$

41. $f(z) = \frac{1}{7}$ is not uniformly continuous in the region — (A) $0 \le |z| \le 1$ (B) $0 \le |z| < 1$ (C) $0 < |z| \le 1$ (D) 0 < |z| < 1

$$(A) \ 0 \le |z| \le 1$$

(B)
$$0 \le |z| < 1$$

(C)
$$0 < |z| \le 1$$

(D)
$$0 < |z| < 1$$

- 42. The sum of exponents of a and b in every term of the expansion $(a + b)^n$ is
 - (A) n /

- (B) 1 (C) 0 (D) 2n
- 43. The sum of odd co-efficient in the expansion $(1+x)^4$ is
 - (A) 4 (B) 8 (C) 12

- (D) 14
- 44. The domain of $\cot x$ is
 - (A) \mathbb{R} choice \mathbb{Z}
- (B) $\mathbb{R} \{x/x = n\pi, n \in \mathbb{Z}\}$ (C) None
- 45. The graph of function $y = \sin x$ is discontinuous at $x = \sin x$
 - (A) 0°
- (B) 90°
- (C) 180° (D) None
- 16. Second derivative of $y = x^9 + 10x^2 + 2x 1$ at x = 0 is
 - (A) 20
- (B) 10 (C) 12 (D) 1
- 47. Centroid of triangle is a point that divides each median in the ratio
 - (A) 2:1 (B) 1:2 (C) 3:1 (D) 1:3

- 48. A one to one linear transformation preserves

 - (A) basis but not dimension (B) basis and dimension
- (C) dimension but not basis

- (D) None of these
- 49. Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$ (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) 0 (D) 1

- 50. Optimization means a quantity under certain constraints:
- - (A) Maximize (B) Minimize (C) Both (D) None

- 51. Circle is special case of
 - (A) Ellipse
- (B) Parabola
- (C) Hyperbola (D) None
- 52. Let p and q be distinct primes. How many (mutually-nonisomorphic) abelian groups are there of order p²q⁴
- (A) 6 (B) 8 (C) 10 (D) 12
- 53. The projection of $\underline{a} = \underline{i} 2\underline{j} + \underline{k}$ along $\underline{b} = 4\underline{i} 4\underline{j} + 7\underline{k}$ is
 - (A) $\frac{19}{9}$

- (B) $\frac{19}{10}$ (C) $\frac{19}{11}$ (D) $\frac{19}{12}$
- 54. A linear transformation $T:U \longrightarrow V$ is one-to-one if and only if kernel of T is equal to
 - (A) U

- (B) V (C) 0 (D) Im(T)
- 55. To each element of a group there correspond how many inverse element

 - (A) At least one (B) Only one (C) Two (D) None
- 56. Which of the following is not monoid w.r.t addition

- (A) \mathbb{N} (B) \mathbb{Z} (C) $\mathbb{W}4$ (D) None

..... vectors.

(A) n+1 (B) n (C) n-1 (D) n+3

501	Tage o	
4011		
57.	. The set $\{1,-1,i,-i\}$ is group w.r.t	
	$(A) \times (B) - (C) + (D)$ None	
58.	. Which of the following is subset of all set	
	(A) ϕ (B) 0 (C) $\{1, 2, 3\}$ (D) None	
59.	. The set of the first elements of the order pairs forming a relation is called	
	(A) Domain (B) A into B (C) Range (D) None	
60.	o. If $n(X) = 18$, $n(X \cup Y) = 40$, $n(X \cap Y) = 7$ then $n(Y) =$	
	(A) 29 (B) 30 (C) 31 (D) None	
61.	The period of cotx is	
E	(A) $\frac{\pi}{2}$ (B) π (C) 2π (D) 4π	
62	If ω is an imaginary cubic root of unity then $(1 + \omega - \omega^2)^7$ equal to	
02.	(A) 128ω (B) -128ω (C) $128\omega^2$ (D) $-128\omega^2$	
00		
63.	3. If $\#n = (n-5)^2 + 5$, then find $\#3 \times \#4$ (A) 54 (B) 55 (C) 56 (D) 59	
		1 7 2
64.	$1. i^{101} = -$	
	(A) 1 (B) -1 (C) i (D) $-i5$	
65.	. The group of Quaternions is a non-abelian group of order —	
	(A) 6 (B) 8 (C) 10 (D) 1	
66.	Every S	
	(A) an abelian but not cyclic (B) an abelian group (C) a Non-abelian group	(D) a
	cyclic group	
67.	. Any two conjugate subgroup of a group G are	
	(A) Equivalent (B) Similar (C) Isomorphic (D) None	
68.	s. If H is a subgroup of index then H is a normal subgroup of G	
//i	(A) 2 (B) 4 (C) prime number (D) None	
69.	. nhj	7 50
	(A) prime number (B) composite number (C) natural number (D) None	
70	. Let G be a cylic group of order 24 generated by a then order of a^{10} is	
10.	(A) 2 (B) 19 (C) 10 (D) 1	

71. If a vector space V has a basis of n vectors, then every basis of V must consist of exactly

8/	
72.	An indexed set of vectors $\{\nu_1,\nu_2,\nu_p\}$ in R^n is said to be if the vector equation
/	$x_1v_1 + x_2v_2 + + x_pv_p = 0$ has only the trivial solution.
	(A) linearly independent (B) basis (C) linearly dependent (D) none
73.	If A and B are overlapping sets, then
	(A) $A \cap B \neq \phi$ (B) $A = B$ (C) $A \cap B = \phi$ (D) None
7/1	Intersection of any collection of normal subgroup G
14.	(A) is normal subgroup (B) may not be normal subgroup (C) is cyclic subgroup
	(D) is abelian subgroup
20	
7	A group G having order where P is a prime is always abelian. (A) p^4 (B) p^2 (C) $2p$ (D) p^3
E D	(A) p (B) p (C) 2p (D) p
7 6.	The number of conjugacy classes of symmetric group of degree 3 is
/	(A) 6 (B) 2 (C) 3 (D) 4
77.	
	(A) 1,2,6 (B) 0,2,3 (C) 0,2,4 (D) 2,3,4
78.	The set of all solutions to be homogeneous equation $Ax = 0$ where A is an $m \times n$ matrix
	is
	(A) Null space (B) Column space (C) Rank (D) None
79.	If 7 cards are dealt from an ordinary deck of 52 playing cards, What is the probability
	that at least one of them will be queen
	(A) 0.4773 (B) 0.4774 (C) 0.4775 (D) 0.4776
80.	Every group of order ≤ 5 is
	(A) cyclic (B) abelian (C) not abelian (D) none
01	Number of the form of the second of the seco
01.	Number of non-isomorphic groups of order 8 is
82.	$\underline{\mathbf{a}}.(\underline{\mathbf{b}} \times \underline{\mathbf{c}})$ is not equal to
	(A) $\underline{\alpha}.(\underline{c} \times \underline{b})$ (B) $(\underline{\alpha} \times \underline{b}).\underline{c}$ (C) $\underline{b}.(\underline{c} \times \underline{a})$ (D) $\underline{c}.(\underline{\alpha} \times \underline{b})$
83.	Let G be a group. Then the derived group G' is subgroup of G.
	(A) Cyclic (B) Abelian (C) Normal (D) None
84.	Finite simple abelian groups are of order
	(A) 4 (B) prime power (C) power of 2 (D) prime number
85	Set of integers \mathbb{Z} is of the set Q of rationals
	(A) prime ideal (B) subring (C) maximal ideal (D) None
00	
00.	Solution set of the equation $1 + \cos x = 0$ is (A) $\{\pi + n\pi : n \in \mathbb{Z}\}$ (B) $\{2n\pi : n \in \mathbb{Z}\}$ (C) $\{\frac{\pi}{2} + n\pi : n \in \mathbb{Z}\}$ (D) $\{\pi + 2n\pi : n \in \mathbb{Z}\}$
	(2) (2) (2) (3) (3) (4) (4) (5) (6) (6) (6) (7)

- 87. None-zero elements of a field form a group under
- (A) addition (B) multiplication (C) subtraction
- (D) division
- 88. Let Q be a set of rational numbers. Then $Q(\sqrt{3}) = \{a + b\sqrt{3}; a, b \in Q\}$ is a vector space over Q with dimension
 - (A) 1 (B) 2 (C) 3

- (D) 4
- 89. Let W be a subspace of the space R^3 . If $\dim \mathbf{W} = 0$, then W is a

 - (A) line through the origin 0 (B) plane through the origin 0
- (C) entire space R³

- (D) a point
- 90. Let $P_n(t)$ be a vector space of all polynomials of degree $\leq n$: Then
 - (A) $P_n(t) = n 1$ (B) $P_n(t) = n$ (C) $P_n(t) = n + 1$

- 91. In the group (Z, 0) of all integers where $a \circ b = a + b + 1$ for $a, b \in Z$, then inverse of -3
 - (A) -3 (B) 0 (C) 3 (D) 1

- 92. Let G be a group in which $g^2 = 1$ for all g in G. Then G is......
 - (A) abelian (B) cyclic
- (C) abelian but not cyclic (D) non-abelian
- 93. The metric coefficients in cylindrical coordinates are
 - (A) (1, 1, 1)
- (B) (1,0,1) (C) (1,r,1)
- (D) None
- 94. The value of quantity $\delta_{ij}x_ix_j$ is
 - (A) χ_i

- (B) 0 (C) x_i^j (D) $x_i x_i$
- 95. A tensor of rank 5 in a space 4 dimensions has components
 - (A) 5
- (B) 2
- (C) 625
- (D) 1024
- 96. f' is bounded if and only if
- (A) a > 1 + c (B) a > 2 + c (C) $a \ge 1 + c$ (D) $a \ge 2 + c$
- 97. The value of $\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$ is
 - (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{1}{2}$ (D) 1
- 98. Let \mathbb{R} be the cofinite topology. Then \mathbb{R} is a

- (A) T_0 but not T_1 (B) T_1 but not T_2 (C) T_2 but not T_3 (D) T_2 but not T_1
- 99. A particular integral of the differential equation $(D^2 + 4)y = x$ is
 - (A) xe^{-2x}
- (B) $x \cos 2x$ (C) $x \sin 2x$ (D) $\frac{x}{4}$
- 100. The area of the cardioid $r = a(1 + \cos \theta)$ is equal
- (A) $4\pi a^2$ (B) $8\pi a$ (C) $\frac{3\pi a^2}{2}$ (D) $2\pi a^2$

Sample Paper 4 Page 8

ANSWERS

1. B	2. B	3. C	4. A 5.	D 6. I	B 7. D	8. D	9. D	10. C	/11. D
12. C	13. A	14. C	15. A	16. B	17. B	18. A	19. A	20. B	21. D
22. B	23. A	24. B	25. C	26. B	27. D	28. B	29. C	30. B	31. D
32. D	33. B	34. D	35. A	36. D	37. B	38. B	39. C	40. C	41. B
42. A	43. B	44. B	45. D	46. A	47. A	48. A	49. A	50. A	51. A
52. A	53. A	54. A	55. A	56. A	57. A	58. A	59. A	60. A	61. A
62. A	63. A	64. A	65. A	66. A	67. A	68. A	69. A	70. A	71. A
72. A	73. A	74. A	75. A	76. A	77. A	78. A	79. A	80. A	81. A
82. A	83. A	84. A	85. A	86. A	87. A	88. A	89. A	90. A	91. A
92. A	93. A	94. A	95. A	96. A	97. A	98. A	99. A	100. A	

Disclaimer: MathCity.org does not represent any official or government/semi-government/private educational institute or board or university. The resources given on MathCity.org holds no official position in government (or in government educational institute or board or university). The sample paper is made to help the students and the actual paper may be totally different from this sample. Some of the questions are taken from past papers.