Search
You can find the results of your search below.
Fulltext results:
- Chapter 06: Sequences and Series
- nd $d$ be common difference of A.P, then $$\begin{align}l=a_1+(p-1)d,\\ m=a_1+(q-1)d,\\ n=a_1+(r-1)d.\end{align}$$ Now $$\begin{align}L.H.S &= l(q-r)+m(r-p)+n(p-q)\\ &= lq-lr+mr-mp+np-nq\\ &=(l-n)q+(m-l)r+(n-m)p\\ &... (r-q)dp\\ &=[pq-qr+qr-pr+pr-pq]d=(0)d=0=R.H.S\end{align}$$ **Exercise 6.4⇒ Question 3(ii)** An equation