Search
You can find the results of your search below.
Fulltext results:
- Chapter 06: Sequences and Series @fsc:fsc_part_1_solutions
- term and $d$ be common difference of A.P, then $$\begin{align}l=a_1+(p-1)d,\\ m=a_1+(q-1)d,\\ n=a_1+(r-1)d.\end{align}$$ Now $$\begin{align}L.H.S &= l(q-r)+m(r-p)+n(p-q)\\ &= lq-lr+m
- Unit 02: Differentiation @fsc:fsc_part_2_solutions
- 1}{x-1}$ with respect to $x$. ===Method 1=== $$ \begin{aligned} \frac{d}{dx}\left(\frac{x+1}{x-1}\right)... 1}{x-1}= 1+\frac{2}{x-1}=1+2(x-1)^{-1} $$ Now $$ \begin{aligned} \frac{d}{dx}\left(\frac{x+1}{x-1}\right)
- FSc Part 1 (KPK Boards)
- e combination and know the notation $^nC_r=\left(\begin{smallmatrix}n\\ r\end{smallmatrix} \right)=\frac{