Search
You can find the results of your search below.
Fulltext results:
- Ch 03: Matrices and Determinants @fsc-part1-ptb:important-questions
- == <list-group> * Fin $x$ and $y$ if $ \left[ {\begin{array}{c} x+3&1\\ -3& 3y-4 \end{array}} \right]= \left[ {\begin{array}{c} 2&1\\ -3&2 \end{array}} \right]$ --- ... ala(2015)// * Solve for matrix $A$ if $\left[ {\begin{array}{c}4&3\\ 2&2 \end{array}} \right]A-\left[ {\begin{array}{c} 2&3\\ -1&-2 \end{array}} \right]= \left
- Exercise 2.8 (Solutions) @fsc-part1-ptb:sol:ch02
- $G=\{0,1\}$ is shown in the adjoining table. \[ \begin{array}{|c|c|c|} \hline \oplus & 0 & 1 \\ \hlin... able, show that the set is an Abelian group? \[ \begin{array}{|c|c|c|c|c|} \hline \oplus & 0 & 1 & 2 ... is set? Show that this set is Abelian group. \[ \begin{array}{|c|c|c|} \hline \oplus & E & O \\ \hli... \left\{ 1,\omega ,{{\omega }^{2}} \right\}$. \[ \begin{array}{|c|c|c|c|} \hline \times & 1 & \omega &
- Exercise 1.1 (Solutions) @fsc-part1-ptb:sol:ch01
- or '$\times$'. **Solutions** Addition Table \[\begin{array}{|c|c|} \hline + & 0 \\ \hline 0 & 0 \\ ... ure property w.r.t. '+'. Multiplication Table \[\begin{array}{|c|c|} \hline \times & 0 \\ \hline 0 & ... or '$\times$'. **Solutions** Addition Table \[\begin{array}{|c|c|} \hline + & 1 \\ \hline 1 & 2 \\ ... ure property w.r.t. '+'. Multiplication Table \[\begin{array}{|c|c|} \hline \times & 1 \\ \hline 1 &
- Definitions: FSc Part 1 (Mathematics): PTB
- brackets is called Matrix. \\ e.g. $A = \left[ {\begin{array}{c} 1&2&3\\ 0&8&4\\ 2&1&1 \end{array}} \rig... f rows $\times$ no. of column. e.g. $A = \left[ {\begin{array}{c} 3&1&7\\ 0&5&4 \end{array}} \right]$. Or... ngle row is called Row Matrix. e.g. $B = \left[ {\begin{array}{c} 1&4&6 \end{array}} \right]$ * **Colu... olumn is called column Matrix. e.g. $B = \left[ {\begin{array}{c} 1\\3\\5 \end{array}} \right]$ * **Sq
- Exercise 1.2 (Solutions) @fsc-part1-ptb:sol:ch01
- =z\nonumber \] - Existence of Additive Inverse \[\begin{array}{l} \mbox{For each} \; z\in \mathbb{C}, \mb... 4(iii)** Simplify: ${-i}^{19}$ **Solutions** \begin{align} {-i}^{19}& =[(-1)(i)] ^{19}=(-1)^{19}\cdo... laystyle {{(-1)}^{-\frac{21}{2}}}$ **Solution** \begin{align} (-1)^{-\frac{21}{2}}&=\frac{1}{(-1)^\frac... \overline{z }=x-iy$, where $x,y\in \mathbb{R}$ \begin{align} \text{Sum} &=z+\overline{z}\\ &=x+iy+x-i
- Definitions: FSc Part 1 (Mathematics): PTB by Aurang Zaib
- e for the logical statement \( p \land q \): \[ \begin{array}{|c|c|c|} \hline p & q & p \land q \\ \hlin
- Ch 04: Quadratic Equations @fsc-part1-ptb:important-questions
- tem of equations --- //BISE Gujrawala(2017)// $${\begin{array}{c} x^2-5xy+6y^2=0\\x^2+y^2=45\end{array}}$