Search
You can find the results of your search below.
Fulltext results:
- MTH424: Convex Analysis (Fall 2020)
- for the function defined below at $x=1$. $$ f(x)=\begin{cases} x^2, \quad x\geq 1; \\ x, \quad x<1. \e
- MTH321: Real Analysis I (Spring 2023)
- f:[0,1]\to \mathbb{R}$ defined as $f(x)=\left\{ \begin{matrix} 0 \text{ if $x$ is rational,} \\ 1 \text{
- MTH322: Real Analysis II (Spring 2023)
- ch function $f_n$ is continuous on $[a,b]$, then \begin{equation} \int_{a}^{b} f(x) dx = \lim\limits_{n\t