MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Exact match
  • Exact match
  • Starts with
  • Ends with
  • Contains
@math-11-nbf:sol:unit01
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Question 4, Exercise 1.3
26 Hits, Last modified: 5 months ago
3 ; 2 z-(2+5 i) \omega=2+3 i$. ** Solution. ** \begin{align} &(1-i) z+(1+i) \omega=3 \quad \cdots(1)\\ ... cdots(2) \end{align} Multiplying Eq. (1) by $2$: \begin{align} &(2-2i)z+(2+2i) \omega=6 \quad \cdots (3) \end{align} Multiplying Eq. (2) by $(1-i)$: \begin{align} &2(1-i)z-(1-i) (2+5 i)\omega=(1-i) (2+3i)\... i \quad \cdots (4) \end{align} $(3)-(4)$ implies \begin{align} (9+5i) \omega=1-i \end{align} \begin{align
Question 10, Exercise 1.2
24 Hits, Last modified: 5 months ago
left|-\overline{z_{!}}\right|.$$ **Solution.** \begin{align} |z_1| &= \sqrt{(-3)^2 + (2)^2} \\ &= \sqr... + 4} = \sqrt{13} \,\, -- (1) \end{align} Now \begin{align} -z_1 &= -(-3 + 2i) = 3 - 2i\\ \implies |-z... + 4} = \sqrt{13} \,\, -- (2) \end{align} Also \begin{align} \overline{z_1} &= -3 - 2i \\ \implies |\o... + 4} = \sqrt{13} \,\, -- (3) \end{align} Now \begin{align} -\overline{z_1} &= -(-3 - 2i) = 3 + 2i \\
Question 1, Exercise 1.3
21 Hits, Last modified: 5 months ago
o linear functions: $z^{2}+169$. **Solution.** \begin{align} & z^{2} + 169 \\ = & z^{2} - (13i)^2 \\ =... linear functions: $2 z^{2}+18$. **Solution.** \begin{align} & 2z^2 + 18 \\ = &2(z^2 - (3i)^2)\\ = &2(... near functions: $3 z^{2}+363$. **Solution.** \begin{align} & 3z^2 + 363 \\ = & 3(z^2 - (11i)^2)\\ = ... unctions: $z^{2}+\dfrac{3}{25}$. **Solution.** \begin{align} & z^2 + \dfrac{3}{25} \\ = & z^2 - \left(\
Question 9, Exercise 1.2
16 Hits, Last modified: 5 months ago
+4 i)^{-1}$. **Solution.** Suppose $z=2+4i$. \begin{align} Re(2+4i)^{-1} & = Re(z^{-1}) = \dfrac{Re(z... \dfrac{2}{20}\\ &= \dfrac{1}{10}. \end{align} \begin{align} Im(2+4i)^{-1} & = Im(z^{-1}) = -\dfrac{Im(... |z|^4}. \] First, note $Re(z)=3$, $Im(z)=-2$ and \begin{align} |z| &= \sqrt{3^2 + (-2)^2} \\&= \sqrt{13}.... gn} Then \[|z|^4=169.\] Using in above formulas \begin{align} Re((3 - 2i)^{-2}) &= \frac{(3)^2 - (-2)^2}
Question 1, Exercise 1.4
14 Hits, Last modified: 5 months ago
tion. ** Let $z=x+iy=2 + i 2 \sqrt{3}$. We have \begin{align} r & = \sqrt{x^2 + y^2} = \sqrt{2^2 + (2\s... = \sqrt{4 + 12} = \sqrt{16} = 4. \end{align} and \begin{align} \alpha & = \tan^{-1}\left|\frac{y}{x}\righ... orm. ** Solution. ** Let $z=x+iy=3-i \sqrt{3}$ \begin{align} r &= \sqrt{x^2 + y^2} = \sqrt{3^2 + (-\sqr... 3} = \sqrt{12} = 2\sqrt{3}. \end{align} Next, \begin{align} \alpha &= \tan^{-1}\left|\frac{y}{x}\right
Question 7, Exercise 1.4
12 Hits, Last modified: 5 months ago
{\pi}{4}$ ** Solution. ** Suppose $z=x+iy$, as \begin{align*} &\arg (z-1)=-\dfrac{\pi}{4} \\ \implies &... n. ** Suppose $z=x+iy$, then $\bar{z}=x-iy$. As \begin{align*} &z \bar{z}=4\left|e^{i \theta}\right| \\ ... arg (z-4) \leq \dfrac{\pi}{3}$ ** Solution. ** \begin{align*} &-\frac{\pi}{3} \leq \arg (z-4) \leq \fra... right) \leq \dfrac{\pi}{6}$ ** Solution. ** \begin{align*} &0 \leq \arg \left(\frac{z-4}{1+i}\right)
Question 4, Exercise 1.1
10 Hits, Last modified: 5 months ago
ollowing: $(2+3i)x+(1+3i)y+2=0$ **Solution.** \begin{align}&(2+3i)x+(1+3i)y+2=0\\ \implies &(2x+y+2)+(... 0.\end{align} Comparing real and imaginary parts \begin{align} 2x+y+2&=0 \quad \cdots(1)\\ 3x+3y&=0\quad \cdots (2) \end{align} From (2), \begin{align} &3x=-3y \\ x=-y \quad ... (3) \end{align} Putting value of $x$ in (1) \begin{align}2(-y)+y+2&=0\\ -2y+y&=-2\\ -y&=-2\\ y&=2\en
Question 8, Exercise 1.2
10 Hits, Last modified: 5 months ago
** Given: $$|2z-i|=4.$$ Put $z=x+i y$, we have \begin{align} & |2(x+iy)-i|=4 \\ \implies & |2x+i(2y-1)|... 2+(2y-1)^2}=4 \end{align} Squaring on both sides \begin{align} & (2x)^2+(2y-1)^2 = 16\\ \implies & 4x^2+4... en: $$|z-1|=|\bar{z}+i|.$$ Put $z=x+iy$, we have \begin{align} & |(x+iy)-1| = |(x-iy)+i| \\ \implies & |x... (y-1)^2} \end{align} Squaring both sides, we get \begin{align} & (x-1)^2 + y^2 = x^2 + (y-1)^2 \\ \implie
Question 2, Exercise 1.3
9 Hits, Last modified: 5 months ago
pleting square: $z^{2}-6 z+2=0$. **Solution.** \begin{align} & z^2 - 6z + 2 = 0 \\ \implies & z^2 - 2(3... \end{align} Take the square root of both sides: \begin{align} &z - 3 = \pm \sqrt{7} \\ \implies &z = 3 ... : $-\dfrac{1}{2} z^{2}-5 z+2=0$. **Solution.** \begin{align} -\dfrac{1}{2} z^{2} - 5z + 2& = 0 \end{ali... tiply through by $-2$ to eliminate the fraction: \begin{align} z^2 + 10z - 4 &= 0 \\ z^2 + 10z +25-25-4&
Question 6(i-ix), Exercise 1.4
9 Hits, Last modified: 5 months ago
i \sin 315^{\circ}\right)$ ** Solution. ** \begin{align} &\sqrt{2}\left(\cos 315^{\circ}+i \sin 315... rc}+i \sin 210^{\circ}\right)$ ** Solution. ** \begin{align*} &5\left(\cos 210^\circ + i \sin 210^\circ... sin \dfrac{3 \pi}{2}\right)$ ** Solution. ** \begin{align*} &2\left(\cos \frac{3\pi}{2} + i \sin \fra... in \dfrac{5 \pi}{6}\right)$ ** Solution. ** \begin{align*} &4\left(\cos \frac{5\pi}{6} + i \sin \fra
Question 2, Exercise 1.1
8 Hits, Last modified: 5 months ago
form $x+iy$: $(3+2i)+(2+4i)$ ** Solution. ** \begin{align}&(3+i2)+(2+i4)\\ =&(3+2)+(i2+i4)\\ =&5+i6\e... he form $x+iy$: $(4+3i)-(2+5i)$ **Solution.** \begin{align}&(4+3i)-(2+5i)\\ =&(4-2)+(3i-5i)\\ =&2-2i\e... he form $x+iy$: $(4+7i)+(4-7i)$ **Solution.** \begin{align} &(4+7i)+(4-7i)\\ =&(4+4)+(7i-7i)\\ =&8+0i.... the form $x+iy$: $(2+5i)-(2-5i)$ **Solution.** \begin{align} &(2+5i)-(2-5i)\\ =&(2-2)+(5i+5i)\\ =&0+10i
Question 7, Exercise 1.1
6 Hits, Last modified: 5 months ago
2 i$. **Solution.** Suppose $$z=11+12i$$ Then \begin{align}|z|&= \sqrt{(11)^2+(12)^2}\\ &=\sqrt{265}\e... . **Solution.** Suppose $z=(2+3i)āˆ’(2+6i)$, then \begin{align}z&=2+3iāˆ’2āˆ’6i\\ &=-3i \end{align} Now \begin{align} |z| &= \sqrt{0^2+(-3)^2} \\ &= \sqrt{9} = 3. \... **Solution.** Suppose $$z=(2-i)(6+3 i),$$ then \begin{align} |z|&=|(2-i)(6+3 i)|\\ &=|(2-i)| |(6+3 i)|
Question 3, Exercise 1.4
6 Hits, Last modified: 5 months ago
z_r=x_r+iy_r$, $r=1,2,...,n$ and $z=a+ib$. Then \begin{align*} &|z_r|=\sqrt{x_r^2+y_r^2} \quad \text{and... an write these complex numbers in polar form as: \begin{align*} z_r=|z_r| e^{i\theta_k} \quad \text{and}\... theta} \,\,-- (1) \end{align*} Now we have given \begin{align*} & \left(x_{1}+i y_{1}\right)\left(x_{2}+i... s z_n = z. \end{align*} By using $(1)$, we have \begin{align*} &|z_1| e^{i\theta_1}\cdot |z_2| e^{i\thet
Question 1, Exercise 1.1
5 Hits, Last modified: 5 months ago
1(i)==== Evaluate ${{i}^{31}}$. **Solution.** \begin{align}{{i}^{31}}&=i\cdot{{i}^{30}}\\ &=i\cdot{{\l... ate ${{\left( -i \right)}^{6}}$. **Solution.** \begin{align} {{\left( -i \right)}^{23}}&=(-1)^{23} i^{2... ( -1 \right)}^{\frac{-13}{2}}}$. **Solution.** \begin{align}{{\left( -1 \right)}^{\frac{-23}{2}}}&={{\l... ac{2}{(-1)^{\frac{3}{2}}}$. GOOD **Solution.** \begin{align}{{\left( -1 \right)}^{\frac{15}{2}}}&={{\le
Question 3, Exercise 1.1
5 Hits, Last modified: 5 months ago
lowing $\dfrac{(2+i)(3-2i)}{1+i}$ **Solution.** \begin{align}&\dfrac{(2+i)(3-2i)}{1+i}\\ =&\dfrac{6-2i^2... following $\dfrac{1+i}{(2+i)^2}$ **Solution.** \begin{align}&\dfrac{1+i}{(2+i)^2}\\ =&\dfrac{1+i}{4+i^2... $\dfrac{1}{3+i}-\dfrac{1}{3-i}$ **Solution.** \begin{align}&\dfrac{1}{3+i}-\dfrac{1}{3-i}\\ =&\dfrac{(... ollowing $(1+i)^{-2}+(1-i)^{-2}$ **Solution.** \begin{align}&(1+i)^{-2}+(1-i)^{-2}\\ =&\dfrac{1}{(1+i)^
Question 3, Exercise 1.3
5 Hits, Last modified: 5 months ago
Question 5, Exercise 1.4
5 Hits, Last modified: 5 months ago
Question 1, Exercise 1.2
4 Hits, Last modified: 5 months ago
Question 3, Exercise 1.2
4 Hits, Last modified: 5 months ago
Question 5, Exercise 1.2
4 Hits, Last modified: 5 months ago
Question 6, Exercise 1.2
4 Hits, Last modified: 5 months ago
Question 2, Review Exercise
4 Hits, Last modified: 5 months ago
Question 5, Exercise 1.1
3 Hits, Last modified: 5 months ago
Question 2, Exercise 1.4
3 Hits, Last modified: 5 months ago
Question 6(x-xvii), Exercise 1.4
3 Hits, Last modified: 5 months ago
Question 8, Exercise 1.4
3 Hits, Last modified: 5 months ago
Question 2, Exercise 1.2
2 Hits, Last modified: 5 months ago
Question 4, Exercise 1.2
2 Hits, Last modified: 5 months ago
Question 4, Exercise 1.4
2 Hits, Last modified: 5 months ago
Question 3, Review Exercise
2 Hits, Last modified: 5 months ago
Question 4, Review Exercise
2 Hits, Last modified: 5 months ago
Question 7, Review Exercise
2 Hits, Last modified: 5 months ago
Question 6, Exercise 1.1
1 Hits, Last modified: 5 months ago
Question 7, Exercise 1.2
1 Hits, Last modified: 5 months ago
Question 9, Exercise 1.4
1 Hits, Last modified: 5 months ago
Question 10, Exercise 1.4
1 Hits, Last modified: 5 months ago
Question 5, Review Exercise
1 Hits, Last modified: 5 months ago
Question 6, Review Exercise
1 Hits, Last modified: 5 months ago
Question 8, Review Exercise
1 Hits, Last modified: 5 months ago