Search
You can find the results of your search below.
Fulltext results:
- Question 20 and 21, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... $a_5=48$. Assume $r$ be common difference, then by general formula for nth term, we have $$ a_n=ar^{... $a_5=48$. Assume $r$ be common difference, then by general formula for nth term, we have $$ a_n=ar^{... $a_4=8$. Assume $r$ to be the common ratio. Then, by the general formula for the $n$th term, we have $
- Question 14 and 15, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... .\\ General term of the geometric series is given by $$a_{n}=a_{1} r^{n-1}.$$ Thus \begin{align*} a_3&... .\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_5 &=
- Question 16 and 17, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... .\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_4 &=... .\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_5 &=
- Question 18 and 19, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... .\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_6 &=... .\\ General term of the geometric series is given by $a_{n}=a_{1} r^{n-1}.$ Thus \begin{align*} a_8 &=
- Question 22 and 23, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... 1}{4}$. Assume $r$ to be the common ratio. Then, by the general formula for the $n$th term, we have \... 3=75$. Assume $r$ to be the common ratio. Then, by the general formula for the $n$th term, we have
- Question 24 and 25, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... 0$. Assume $r$ to be the common ratio. \\ Then, by the general formula for the $n$th term, we have \... \\ Assume $r$ to be the common ratio. \\ Then, by the general formula for the $n$th term, we have \
- Question 17 and 18, Exercise 4.7
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... ow consider this to make kth term of given series by just taking square. </callout> Consider $T_k$ r... ow consider this to make kth term of given series by just taking square. </callout> Consider $T_k$ r
- Question 23 and 24, Exercise 4.7
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... erms of the arithmetico-geometric series is given by \begin{align*} S_{n}=\frac{a}{1-r}+d r \frac{\le... erms of the arithmetico-geometric series is given by: \[ S_n = \frac{a}{1 - r} + d r \frac{1 - r^n}{
- Question 25 and 26, Exercise 4.7
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... erms of the arithmetico-geometric series is given by: \begin{align*} S_n& = \frac{a}{1 - r} + d \cdot ... erms of the arithmetico-geometric series is given by: \begin{align*} S_n &= \frac{a}{1 - r} + d \cdot
- Question 27 and 28, Exercise 4.7
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... of infinite arithmetico-geometric series is given by $$ S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}... he infinite arithmetico-geometric series is given by:\\ \[ S_{\infty} = \frac{a}{1 - r} + \frac{d r}{(
- Question 29 and 30, Exercise 4.7
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... he infinite arithmetico-geometric series is given by:\\ \[ S_{\infty} = \frac{a}{1 - r} + \frac{d r}{(... he infinite arithmetico-geometric series is given by:\\ \[ S_{\infty} = \frac{a}{1 - r} + \frac{d r}{(
- Question 9 and 10, Exercise 4.2
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... he fall during the 8 th second? ** Solution. ** By the given data, we have \begin{align*}16, 48, 80,
- Question 26 and 27, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... ation of 100,000 and the population is increasing by $3 \%$ each year. What will the population be in
- Question 28 and 29, Exercise 4.4
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... school informs its members of school cancellation by telephone. The principal calls 2 teachers, each o
- Question 15, Exercise 4.5
- el Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textboo... 25} ft$ \\ Let $D$ be the total distance covered by the ball. Then $$D=30+2\left(12+\frac{24}{5}+\fra