Search
You can find the results of your search below.
Fulltext results:
- Question 1, Exercise 9.1
- minimum values of the trigonometric function: $y=\dfrac{2}{3}-\dfrac{1}{2} \operatorname{Sin} \theta$ ** Solution. ** We know \begin{align*} -1 \leq \operator... n} \theta \leq 1 \end{align*} Multiplying with $-\dfrac{1}{2}$ \begin{align*} & \dfrac{1}{2} \geq -\dfrac{1}{2} \operatorname{Sin} \theta \geq -\dfrac{1}{2} \en
- Question 2, Exercise 9.1
- ues of the reciprocal trigonometric function: $y=\dfrac{1}{4+3 \operatorname{Sin} \theta}$ ** Solution. ... imum value $(M) = 1$ \\ and minimum value $(m) = \dfrac{1}{7}$. GOOD =====Question 2(ii)===== Find the ma... ues of the reciprocal trigonometric function: $y=\dfrac{1}{\frac{1}{2}-5 \operatorname{Cos} \theta}$ ** ... ximum and minimum value doesn't exist.** As $y=\dfrac{1}{\frac{1}{2}-5 \operatorname{Cos} \theta}$ don'
- Question 2 and 3, Review Exercise
- S \end{align*} =====Question 3(i)===== Verify: $\dfrac{\tan x - \cot x}{\sin x \cos x} = \sec^2 x - \csc^2 x$ ** Solution. ** \begin{align*} LHS & = \dfrac{\tan x - \cot x}{\sin x \cos x} \\ & = \dfrac{\tan x}{\sin x \cos x} - \dfrac{\cot x}{\sin x \cos x} \\ & = \dfrac{\sin x}{\cos x \sin x \cos x} - \df
- Question 4(v-viii), Exercise 9.1
- == Check whether the function is odd or even: $y=\dfrac{\sin ^{2} x}{x+\tan x}$ ** Solution. ** Conside... == Check whether the function is odd or even: $y=\dfrac{\tan x-\sin x}{\sin^3 x}$ ** Solution. ** Consi... == Check whether the function is odd or even: $y=\dfrac{\sec x}{x+\tan x}$ ** Solution. ** Consider \[
- Question 1,Review Exercise
- eta$ </collapse> v. The trigonometric identity $\dfrac{\sin \alpha + \sin 2\alpha}{1+ \cos \alpha+\cos 2... collapse> viii. The value of $\tan x \cdot \tan(\dfrac{\pi}{3}-x)\cdot \tan(\dfrac{\pi}{3}+x) $ is:\\ * (a) $2\cot 3x$ \\ * (b) $\cot 3x$\\ * %%(c)%% $3\tan 3
- Question 6, Exercise 9.1
- \end{align*} Hence period of $\cos (5 x+4)$ is $\dfrac{2\pi}{5}$. GOOD =====Question 6(iii)===== Find th... *} Hence, the period of \( 7 \sin(3x + 3) \) is $\dfrac{2\pi}{3}$ =====Question 6(v)===== Find the perio
- Question 3, Exercise 9.1
- \begin{align*} & \theta \neq n\pi \\ \implies & \dfrac{\pi}{2} x \neq n\pi \\ \implies & x \neq 2n \end{
- Question 4(i-iv), Exercise 9.1
- == Check whether the function is odd or even: $y=\dfrac{x^{2} \cdot \tan x}{x+\sin x}$ ** Solution. **