MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Starts with
  • Exact match
  • Starts with
  • Ends with
  • Contains
@fsc-part1-ptb:sol
  • Any namespace
  • fsc-part1-ptb:sol:ch01 (2)
  • fsc-part1-ptb:sol:ch02 (1)
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Exercise 1.2 (Solutions) @fsc-part1-ptb:sol:ch01
86 Hits, Last modified: 5 months ago
iv (3,7)$ **Solutions** $\quad (2,6)\div (3,7)=\dfrac{(2,6)}{\left( 3,7 \right)}$ $=\dfrac{2+6i}{3+7i}=\dfrac{2+6i}{3+7i}\times \dfrac{3-7i}{3-7i}$ $=\dfrac{6-14i+18i-42{{i}^{2}}}{{{\left( 3 \right)}^{2}}-{{\left(
Exercise 1.1 (Solutions) @fsc-part1-ptb:sol:ch01
6 Hits, Last modified: 5 months ago
step: $$\frac{4+16x}{4}$$ **Solution** $\quad \dfrac{4+16x}{4}$ $=\dfrac{1}{4}\times (4+16x)\quad \because\dfrac{a}{b}=\dfrac{1}{b}\times a$ $=\dfrac{1}{4} \times (4\times 1+4 \times 4x)\quad \text{(multiplicative id
Exercise 2.8 (Solutions) @fsc-part1-ptb:sol:ch02
4 Hits, Last modified: 5 months ago
ity element. d- For $a\in {{\mathbb{Q}}^{+}}$, $\dfrac{1}{a}\in {{\mathbb{Q}}^{+}}$ such that $a\times \dfrac{1}{a}=\dfrac{1}{a}\times a=1$. Thus inverse of $a$ is $\dfrac{1}{a}$. Hence ${{\mathbb{Q}}^{+}}$ is group under addi