Search
You can find the results of your search below.
Fulltext results:
- Chapter 05: Partial Fractions
- ====== Chapter 05: Partial Fractions ====== {{ :fsc:fsc_part_1_solutions:fsc-1-chap-05-ptb.jpg?nolink|Chapter 05: Partial Fractions}} Notes (Solutions) of Chapter 05: Partial Fractions, Text Book of Algebra and Trigonometry Class ... tents & summary==== * Introduction * Rational Fraction * Proper Rational Fraction * Improper
- Chapter 13: Inverse Trigonometric Functions
- \tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A + B}}{{1 - AB}}$ * $\displaystyle{\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A - B}}{{1 + AB}}$ ====View online or download
- Chapter 14: Solutions of Trigonometric Equation
- \tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A + B}}{{1 - AB}}$ * ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A - B}}{{1 + AB}}$ ====Solutions==== <callout ty
- Ch 05: Partial Fractions: Mathematics FSc Part 1 @fsc:fsc_part_1_solutions:ch05
- ====== Ch 05: Partial Fractions: Mathematics FSc Part 1 ====== Notes (Solutions) of Chapter 05: Partial Fractions, Text Book of Algebra and Trigonometry Class
- Chapter 01: Number System
- nd imaginary parts of (i) $(x+iy)^n$ (ii) $\left(\frac{x_1+iy_1}{x_2+iy_2}\right)^n, x_2+iy_2\neq 0$ <
- Chapter 08: Mathematical Induction and Binomial Theorem
- eorem when the index n is a negative Integer or a FRACTION * Application of the Binomial Theorem *