MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Contains
  • Exact match
  • Starts with
  • Ends with
  • Contains
@fsc
  • Any namespace
  • fsc:fsc_part_1_solutions (6)
  • fsc:fsc_part_2_solutions (3)
  • fsc:fsc_part_2_mcqs (2)
  • fsc:fsc_part_1_mcqs (1)
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Unit 02: Differentiation @fsc:fsc_part_2_solutions
17 Hits, Last modified: 5 months ago
one example: We have to find the derivative of $\frac{x+1}{x-1}$ with respect to $x$. ===Method 1=== $$ \begin{aligned} \frac{d}{dx}\left(\frac{x+1}{x-1}\right) &= \frac{(x-1)\frac{d}{dx}(x+1)-(x+1)\frac{d}{dx}(x-1)}{(x-1)^2}\\ &= \frac{(x-1)(1)-(
Chapter 05: Partial Fractions @fsc:fsc_part_1_solutions
9 Hits, Last modified: 5 months ago
====== Chapter 05: Partial Fractions ====== {{ :fsc:fsc_part_1_solutions:fsc-1-chap-05-ptb.jpg?nolink|Chapter 05: Partial Fractions}} Notes (Solutions) of Chapter 05: Partial Fractions, Text Book of Algebra and Trigonometry Class ... tents & summary==== * Introduction * Rational Fraction * Proper Rational Fraction * Improper
FSc Part 1 (KPK Boards)
8 Hits, Last modified: 5 months ago
of differences and its uses. * use the partial fraction to find the sum to $n$ terms and to infinity of the series of the type $$\frac{a}{a(a+d)}+\frac{a}{(a+d)(a+2d)}+...$$ ===Download=== <callout type="success" icon="fa fa-download"> *... begin{smallmatrix}n\\ r\end{smallmatrix} \right)=\frac{n!}{r!(n-r)!}$, its deduction and application to
Unit 01: Functions and Limits @fsc:fsc_part_2_solutions
7 Hits, Last modified: 5 months ago
imits of Important Functions * $\lim_{x\to a}\frac{x^n-a^n}{x-a} = na^{n-1}$, where n is an integer and a>0 * $\lim_{x\to0}\frac{\sqrt{x+a} - \sqrt{a}}{x} = \frac{1}{2\sqrt{a}}$ * Limit at Infinity * Methods for Evaluating the limits at Infinity * $\lim_{x\to0}(1+\frac{1}{n})^n = e$ * $\lim_{x\to0}\frac{a^x-1}{x}
MCQs with key @fsc:fsc_part_2_mcqs
3 Hits, Last modified: 5 months ago
dratic function * (D) A cubic functions * $\frac{d}{dx} \tan 3x =$.... * (A) $3\sec^2 3x$ * (B) $\frac{1}{3}\sec^2 3x$ * (C) $\cot 3x$ * (D) $\s... (B) $dy=f'(x) dx$ * (C) $dy=f(x)$ * (D) $\frac{dy}{dx}$ * If $x<0$, $y<0$, then the point $P(x
Chapter 13: Inverse Trigonometric Functions @fsc:fsc_part_1_solutions
2 Hits, Last modified: 5 months ago
\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A + B}}{{1 - AB}}$ * $\displaystyle{\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A - B}}{{1 + AB}}$ ====View online or download
Chapter 14: Solutions of Trigonometric Equation @fsc:fsc_part_1_solutions
2 Hits, Last modified: 5 months ago
\tan ^{ - 1}}A + {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A + B}}{{1 - AB}}$ * ${\tan ^{ - 1}}A - {\tan ^{ - 1}}B = {\tan ^{ - 1}}\frac{{A - B}}{{1 + AB}}$ ====Solutions==== <callout ty
Ch 05: Partial Fractions: Mathematics FSc Part 1 @fsc:fsc_part_1_solutions:ch05
2 Hits, Last modified: 5 months ago
====== Ch 05: Partial Fractions: Mathematics FSc Part 1 ====== Notes (Solutions) of Chapter 05: Partial Fractions, Text Book of Algebra and Trigonometry Class
MCQs with Answers (FSc/ICS Part 1) @fsc:fsc_part_1_mcqs
1 Hits, Last modified: 5 months ago
(A) equation * (B) formula * (C) rational fraction * (D) theorem </col> <col sm="6"> * An
Chapter 01: Number System @fsc:fsc_part_1_solutions
1 Hits, Last modified: 5 months ago
nd imaginary parts of (i) $(x+iy)^n$ (ii) $\left(\frac{x_1+iy_1}{x_2+iy_2}\right)^n, x_2+iy_2\neq 0$ <
Chapter 08: Mathematical Induction and Binomial Theorem @fsc:fsc_part_1_solutions
1 Hits, Last modified: 5 months ago
eorem when the index n is a negative Integer or a FRACTION * Application of the Binomial Theorem *
Short Questions by Mr. Akhtar Abbas @fsc:fsc_part_2_mcqs
1 Hits, Last modified: 5 months ago
ous function. * Explain why the function $f(x)=\frac{2x}{x-2}$ is discontinuous at $x=2$. * Prove th
Unit 03: Integration @fsc:fsc_part_2_solutions
1 Hits, Last modified: 5 months ago
* Exercise 3.4 * Integration involving Partial Fraction * Exercise 3.5 * The Definite Integrals