MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Contains
  • Exact match
  • Starts with
  • Ends with
  • Contains
@math-11-nbf:sol:unit08
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Question 4 Exercise 8.2
404 Hits, Last modified: 5 months ago
\cos 2 \theta$ %%(c)%% $\tan 2 \theta$ (d) $\sin \frac{\theta}{2}$ (e) $\cos \frac{\theta}{2}$ (f) $\tan \frac{\theta}{2}$ when: $\cos \theta=\frac{3}{5}$ where $0<\theta<\frac{\pi}{2}$ ** Solution. ** Given: $\c
Question 1, Exercise 8.1
302 Hits, Last modified: 5 months ago
\sin 60 \\ \implies \cos (180+60) & = (-1)\left(\frac{1}{2}\right) - (0)\left(\frac{\sqrt{3}}{2}\right) \\ & = -\frac{1}{2} - 0 = -\frac{1}{2} \end{align*} \begin{align*} \cos (\alpha - \beta) & = \cos \alpha \cos \be
Question 5 Exercise 8.2
108 Hits, Last modified: 5 months ago
eta$ using the information given: $\sin 2 \theta=\frac{24}{25}, 2 \theta$ in QII ** Solution. ** Given: $\sin 2\theta=\dfrac{24}{25}$, $2\theta$ in QII. We have $$\cos 2\the... = - \sqrt{1-\sin^2 2\theta}\\ &=- \sqrt{1-\left(\frac{24}{25}\right)^2} \\ &=- \sqrt{\frac{49}{625}} = -\frac{7}{25} \end{align*} Also we have $$\sin\theta
Question 12, Exercise 8.1
102 Hits, Last modified: 5 months ago
+\beta) = \tan(180^{\circ}-\gamma) \\ \implies & \frac{\tan\alpha + \tan\beta}{1-\tan\alpha \tan\beta} ... pha+\beta+\gamma=180^{\circ}$, prove that: $\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}+\cot \frac{\gamma}{2}=\cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$ ** S
Question 9, Exercise 8.1
91 Hits, Last modified: 5 months ago
and $\beta$ are obtuse angles with $\sin \alpha=\dfrac{1}{\sqrt{2}}$ and $\cos \beta=-\dfrac{3}{5}$ find: $\sin (\alpha \pm \beta)$ ** Solution. ** Given: $\sin \alpha=\dfrac{1}{\sqrt{2}}$, $\alpha$ is obtuse angle, i.e. it is in QII.\\ $\cos \beta=-\dfrac{3}{5}$, $\beta$ is obtuse angle, i.e. it is in QI
Question 2, Review Exercise
88 Hits, Last modified: 5 months ago
=====Question 2(i)===== Given that $\sin \theta=\dfrac{3}{5}, \sin \phi=\dfrac{5}{13}$ where $\theta$ is obtuse and $\phi$ is acute. Find the values of $\sin ... ta-\phi)$. ** Solution. ** Given: $\sin \theta=\dfrac{3}{5}$ and $\sin \phi=\dfrac{5}{13}$, where $\theta$ is obtuse and $\phi$ is acute. As\begin{align*} \c
Question 5 and 6, Exercise 8.1
72 Hits, Last modified: 5 months ago
stan. ===== Question 5===== For $\sin \alpha=\dfrac{4}{5}, \tan \beta=-\dfrac{5}{12}$ with terminal side of an angles in QII, find $\cos (\alpha+\beta)$ an... -\beta)$. ** Solution. ** Given: $\sin \alpha=\dfrac{4}{5}$, $\alpha$ is in QII and $\tan \beta=-\dfrac{5}{12}$, $\beta$ is in QII. We have an identity: $$
Question 4 Exercise 8.3
59 Hits, Last modified: 5 months ago
\cos 60^{\circ} \cos 40^{\circ} \cos 20^{\circ}=\dfrac{1}{16}$ ** Solution. ** \begin{align*} LHS &= \c... 40^\circ \cos 20^\circ \\ &= \cos 80^\circ \left(\frac{1}{2}\right) \cos 40^\circ \cos 20^\circ \\ &= \frac{1}{2} \left( \cos 80^\circ \cos 40^\circ \right) \cos 20^\circ \\ &= \frac{1}{4} \left(2 \cos 80^\circ \cos 40^\circ \right
Question 11, Exercise 8.1
55 Hits, Last modified: 5 months ago
istan. ===== Question 11(i)===== Show that: $\dfrac{\sin \left(180^{\circ}+\lambda\right) \cos \left(... }=1$ ** Solution. ** \begin{align*} L.H.S & = \dfrac{\sin \left(180^{\circ}+\lambda\right) \cos \left(... t) \cos \left(270^{\circ}-\lambda\right)} \\ &= \dfrac{\sin \left(2(90)+\lambda\right) \cos \left(3(90)+... da\right) \cos \left(3(90)-\lambda\right)}\\ &= \dfrac{(-\sin \lambda) (\sin\lambda)}{(\sin\lambda)(-\si
Question 10, Exercise 8.1
47 Hits, Last modified: 5 months ago
===== Question 10(i)===== Verify: $\sin \left(\dfrac{\pi}{2}-\alpha\right)=\cos \alpha$ ** Solution. ** \begin{align*} L.H.S & = \sin \left(\frac{\pi}{2}-\alpha\right) \\ & =\sin\frac{\pi}{2} \cos \alpha - \cos \frac{\pi}{2} \sin\alpha \\ & = 1\times \cos \alpha - 0 \times \sin\alpha \\
Question 2, Exercise 8.1
45 Hits, Last modified: 5 months ago
t)\\ &= \cos 45 \cos 30 + \sin 45 \sin 30 \\ &= \dfrac{1}{\sqrt{2}}\cdot \dfrac{\sqrt{3}}{2} + \dfrac{1}{\sqrt{2}}\cdot \dfrac{1}{2} \\ & = \dfrac{\sqrt{3}}{2\sqrt{2}}+\dfrac{1}{2\sqrt{2}} \\ & = \dfrac{\s
Question 3(vi, vii, viii, ix & x) Exercise 8.3
43 Hits, Last modified: 5 months ago
n{align*} LHS & = 2\tan y \cos 3y \\ & = 2 \cdot \frac{\sin y}{\cos y} \cos 3y \\ & = \sec y (2 \cos 3y ... OD =====Questio 3(vii)===== Prove the identity $\dfrac{ \sin 6 \beta + \sin 4 \beta}{\sin 6 \beta - \sin... \beta$ ** Solution. ** \begin{align*} LHS & = \dfrac{ \sin 6 \beta + \sin 4 \beta}{\sin 6 \beta - \sin 4 \beta} \\ & = \dfrac{2 \sin \left( \frac{6\beta + 4\beta}{2} \right) \
Question 8(xvi, xvii & xviii) Exercise 8.2
42 Hits, Last modified: 5 months ago
===Question 8(xvi)===== Verify the identities: $\dfrac{1-\cos ^{2} \beta}{2-2 \cos \beta}=\cos ^{2} \dfrac{\beta}{2}$ ** Solution. ** \begin{align*} LHS &= \dfrac{1-\cos ^{2} \beta}{2-2 \cos \beta}\\ &= \dfrac{\sin ^{2} \beta}{2-2 \cos \beta}\\ &=\dfrac{4\sin ^{2} \
Question 8, Exercise 8.1
41 Hits, Last modified: 5 months ago
istan. ===== Question 8===== If $\sin \alpha=\dfrac{3}{5}$, where $0<\alpha<\dfrac{\pi}{2}$ and $\cos \beta=\dfrac{12}{13}$, where $\dfrac{3 \pi}{2}<\beta<2 \pi$ find: \\ (i) $\csc (\alpha+\beta)$ (ii) $\sec (\alpha+\b
Question 6 Exercise 8.2
37 Hits, Last modified: 5 months ago
cos\theta$$ This gives $$\sin\theta \cos\theta = \frac{1}{2}\sin 2\theta$$ Put $\theta = 15^{\circ}$ \begin{align*} \sin 15^{\circ} \cos 15^{\circ} & = \frac{1}{2}\sin 2(15^{\circ}) \\ & \frac{1}{2}\sin 30^{\circ} = \frac{1}{2} \times \frac{1}{2} \end{align*} \begin{align*} \implies \boxed{\sin
Question 7, Exercise 8.1
36 Hits, Last modified: 5 months ago
Question 7 Exercise 8.2
34 Hits, Last modified: 5 months ago
Question 1, Review Exercise
31 Hits, Last modified: 5 months ago
Question 8(xix, xx, xxi & xxii) Exercise 8.2
29 Hits, Last modified: 5 months ago
Question 4, Exercise 8.1
28 Hits, Last modified: 5 months ago
Question 3(i, ii, iii, iv & v) Exercise 8.3
27 Hits, Last modified: 5 months ago
Question 3, Exercise 8.1
26 Hits, Last modified: 5 months ago
Question 8(x, xi & xii) Exercise 8.2
25 Hits, Last modified: 5 months ago
Question 8(xiii, xiv & xv) Exercise 8.2
24 Hits, Last modified: 5 months ago
Question 2(i, ii, iii, iv and v) Exercise 8.3
24 Hits, Last modified: 5 months ago
Question 7, Review Exercise
20 Hits, Last modified: 5 months ago
Question 5 and 6, Review Exercise
17 Hits, Last modified: 5 months ago
Question 10, Review Exercise
16 Hits, Last modified: 5 months ago
Question 13, Exercise 8.1
15 Hits, Last modified: 5 months ago
Question 8, Review Exercise
15 Hits, Last modified: 5 months ago
Question 8(i, ii & iii) Exercise 8.2
14 Hits, Last modified: 5 months ago
Question 1(ix, x & xi) Exercise 8.3
14 Hits, Last modified: 5 months ago
Question 1, 2 and 3 Exercise 8.2
13 Hits, Last modified: 5 months ago
Question 3, Review Exercise
12 Hits, Last modified: 5 months ago
Question 8(iv, v & vi) Exercise 8.2
9 Hits, Last modified: 5 months ago
Question 14, Exercise 8.1
8 Hits, Last modified: 5 months ago
Question 3(xi, xii & xiii) Exercise 8.3
8 Hits, Last modified: 5 months ago
Question 9, Review Exercise
8 Hits, Last modified: 5 months ago
Question 1(v, vi, vii & viii) Exercise 8.3
5 Hits, Last modified: 5 months ago
Question 8(vii, viii & ix) Exercise 8.2
4 Hits, Last modified: 5 months ago
Question 4, Review Exercise
4 Hits, Last modified: 5 months ago