MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Contains
  • Exact match
  • Starts with
  • Ends with
  • Contains
@mathcraft
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

MathCraft: PDF to LaTeX file: Sample-02
17 Hits, Last modified: 5 months ago
rightarrow \mathbb{R}$ is convex, then $$ f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \frac{f(a)+f(b)}{2} . $$ \noindent\textbf{Proof}: First of all,... rapfigure} \vspace{.2 in} Let now $r(x)=f\left(\frac{a+b}{2}\right)+c\left(x-\frac{a+b}{2}\right)$ be
MathCraft: PDF to LaTeX file: Sample-01
16 Hits, Last modified: 5 months ago
ns $$ \begin{aligned} & E(x, y ; r, s)=\left\{\dfrac{r\left(y^{s}-x^{s}\right)}{s\left(y^{r}-x^{r}\right)}\right\}^{\dfrac{1}{s-r}} \\ & E(x, y ; r, 0)=E(0, r)=\left\{\dfrac{y^{r}-x^{r}}{r(\ln y-\ln x)}\right\}^{1 / r} \\ & E(x, y ; r, r)=e^{-\dfrac{1}{r}}\left(\dfrac{x^{x^{r}}}{y^{y^{r}}}\right)^{