Search
You can find the results of your search below.
Fulltext results:
- Question 7, Exercise 10.2 @fsc-part1-kpk:sol:unit10
- tity ${{\cos }^{4}}\theta -{{\sin }^{4}}\theta =\dfrac{1}{\sec 2\theta }$. ====Solution==== \begin{align... uad \text{(By using double angle identity)}\\ &=\dfrac{1}{\sec 2\theta }=R.H.S.\end{align} =====Question 7(ii)===== Prove the identity $\tan \dfrac{\theta }{2}+co\operatorname{t}\dfrac{\theta }{2}=\dfrac{2}{\sin \theta }$. ====Solution==== \begin{alig
- Question 5, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- stan. =====Question 5(i)===== If $\tan \alpha =\dfrac{3}{4}$, $\sec \beta =\dfrac{13}{5}$ and neither the terminal side of the angle of measure $\alpha$ nor ... \right)$. ====Solution==== Given: $\tan\alpha =\dfrac{3}{4}$. As $\tan\alpha$ is +ive and terminal arm... \Rightarrow \quad \sec \alpha &=-\sqrt{1+{{\left(\frac{3}{4} \right)}^{2}}}=-\sqrt{1+\frac{9}{16}}=-\sqr
- Question 2, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- ====Question 2(i)==== Evaluate exactly: $\sin \dfrac{\pi }{12}$ ===Solution=== We rewrite $\dfrac{\pi }{12}$ as $\dfrac{\pi }{3}-\dfrac{\pi }{4}$ and using the identity: \begin{align}\sin (\alpha -\beta )=\sin \alpha \cos \
- Question 3, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- r, Pakistan. =====Question 3(i)===== If $\sin u=\dfrac{3}{5}$ and $\sin v=\dfrac{4}{5}$ where$u$ and $v$ are between $0$ and $\dfrac{\pi }{2}$, evaluate each of the following exactly... t( u+v \right)$ ====Solution==== Given $\sin u=\dfrac{3}{5},$ $0\le u\le \dfrac{\pi }{2}.$ $\sin v
- Question 5, Exercise 10.3 @fsc-part1-kpk:sol:unit10
- circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}=\dfrac{1}{16}.$$ ====Solution==== We know that\\ $2\cos ... =\cos {{20}^{\circ }}\cos {{40}^{\circ }}\left( \dfrac{1}{2} \right)\cos {{80}^{\circ }}\\ &=\dfrac{1}{2}\cos {{80}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}\\ &=\dfrac{1}{4}\left( 2\,\cos {{80}^{\circ }}\cos {{40}^{\c
- Question 5, Exercise 10.3 @fsc-part1-kpk:sol:unit10
- circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}=\dfrac{1}{16}$. ====Solution==== We know that\\ $2\cos \... =\cos {{20}^{\circ }}\cos {{40}^{\circ }}\left( \dfrac{1}{2} \right)\cos {{80}^{\circ }}\\ &=\dfrac{1}{2}\cos {{80}^{\circ }}\cos {{40}^{\circ }}\cos {{20}^{\circ }}\\ &=\dfrac{1}{4}\left( 2\,\cos {{80}^{\circ }}\cos {{40}^{\c
- Question 6, Exercise 10.2 @fsc-part1-kpk:sol:unit10
- }}$. ====Solution==== Because ${{15}^{\circ }}=\dfrac{{{30}^{\circ }}}{2}$, and $\dfrac{\theta }{2}=\dfrac{{{30}^{\circ }}}{2}$, we can find $\cos {{15}^{\circ }}$by using half angle identity as, \begin{align}\cos {{15}^{\circ }}&=\cos \dfrac{{{30}^{\circ }}}{2}=\sqrt{\dfrac{1+\cos {{30}^{\c
- Question, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- tan. =====Question 4(i)===== If $\sin \alpha =-\dfrac{4}{5}$ and $\cos \beta =-\dfrac{12}{13}$, $\alpha $in Quadrant III and $\beta $in Quadrant II, find t... \right)$. ====Solution==== Given: $\sin \alpha=-\dfrac{4}{5}$, $\alpha$ is in 3rd quadrant, \\ $\sin \beta=-\dfrac{12}{13}$, $\beta$ is in 2nd quadrant. We have an
- Question 7, Exercise 1.2 @fsc-part1-kpk:sol:unit01
- i)===== Separate into real and imaginary parts $\dfrac{2+3i}{5-2i}$. ====Solution==== \begin{align}&\dfrac{2+3i}{5-2i} \\ =&\dfrac{2+3i}{5-2i}\times \dfrac{5+2i}{5+2i} \quad \text{by rationalizing} \\ =&\dfrac{10-6+15i+4i}{25+4}\\ =&\
- Question 8, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- ==Question 8(i)===== Prove that: $\tan \left( \dfrac{\pi }{4}+\theta \right)=\dfrac{\cos \theta +\sin \theta }{\cos \theta -\sin \theta }$ ====Solution==== \begin{align}L.H.S.&=\tan \left( \dfrac{\pi }{4}+\theta \right)\\ &=\dfrac{\sin \left( \dfrac{\pi }{4}+\theta \right)}{\cos \left( \dfrac{\p
- Question11 and 12, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- the angles of a triangle $ABC$, show that $\cot \dfrac{\alpha }{2}+\cot \dfrac{\beta }{2}+\cot \dfrac{\gamma }{2}=\cot \dfrac{\alpha }{2}\cot \dfrac{\beta }{2}\cot \dfrac{\gamma }{2}$ ====Solution==== Sin
- Question 2, Exercise 10.3 @fsc-part1-kpk:sol:unit10
- entity: $$\sin \alpha +\sin \beta =2\sin \left( \dfrac{\alpha +\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right).$$ Put $\alpha ={{37}^{\circ }}... 7}^{\circ }}+\sin {{43}^{\circ }}&=2\sin \left( \dfrac{{{37}^{\circ }}+{{43}^{\circ }}}{2} \right)\cos \left( \dfrac{{{37}^{\circ }}-{{43}^{\circ }}}{2} \right)\\
- Question 6, Exercise 1.3 @fsc-part1-kpk:sol:unit01
- gn}{{z}^{4}}+{{z}^{2}}+1&=0\\ {{z}^{4}}+2\left( \dfrac{1}{2} \right){{z}^{2}}+\dfrac{1}{4}-\dfrac{1}{4}+1&=0\\ {{\left( {{z}^{2}}+\dfrac{1}{2} \right)}^{2}}+\dfrac{4-1}{4}&=0\\ {{\left( {{z}^{2}}+\dfra
- Question 8 & 9, Review Exercise 10 @fsc-part1-kpk:sol:unit10
- Question 8===== Prove the identity $\sin \left( \dfrac{\pi }{4}-\theta \right)\sin \left( \dfrac{\pi }{4}+\theta \right)=\dfrac{1}{2}\cos 2\theta $. ====Solution==== We know that $2\sin \alpha \sin \... eta \right)$ \begin{align}L.H.S.&=\sin \left( \dfrac{\pi }{4}-\theta \right)\sin \left( \dfrac{\pi }{
- Question 2, Exercise 10.2 @fsc-part1-kpk:sol:unit10
- stan. =====Question 2(i)===== If $\sin \theta =\dfrac{5}{13}$ and terminal ray of $\theta $ is in the s... theta $. ====Solution==== Given: $\sin \theta =\dfrac{5}{13}$. Using the identity $$\cos \theta =\pm \... \sqrt{1-{{\sin }^{2}}\theta }\\ &=-\sqrt{1-\left(\frac{5}{13}\right)}\\ &=-\sqrt{\frac{144}{169}}\end{align} $$\implies \cos\theta = -\dfrac{12}{13}$$ Thus, w