MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Ends with
  • Exact match
  • Starts with
  • Ends with
  • Contains
@math-11-nbf:sol:unit01
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Question 4, Exercise 1.3
130 Hits, Last modified: 5 months ago
-i \end{align} \begin{align} \implies \omega & =\dfrac{1-i}{9+5i}\\ &=\dfrac{1-i}{9+5i}\times\dfrac{9-5i}{9-5i}\\ &=\dfrac{9-5-5i-9i}{81+25}\\ &=\dfrac{4-14i}{106}\\ &=\dfrac{2}{53}-\dfrac{7}{53}i\end{al
Question 7, Exercise 1.4
106 Hits, Last modified: 5 months ago
lowing equation in Cartesian form: $\arg (z-1)=-\dfrac{\pi}{4}$ ** Solution. ** Suppose $z=x+iy$, as \begin{align*} &\arg (z-1)=-\dfrac{\pi}{4} \\ \implies & \arg(x+iy-1) = -\dfrac{\pi}{4} \\ \implies & \arg(x-1+iy) = -\dfrac{\pi}{4} \\ \implies & \tan^{-1}\left(\dfrac{y}{x-1}\right)
Question 9, Exercise 1.2
82 Hits, Last modified: 5 months ago
. \begin{align} Re(2+4i)^{-1} & = Re(z^{-1}) = \dfrac{Re(z)}{|z|^2} \\ & =\dfrac{2}{2^2+4^2} = \dfrac{2}{20}\\ &= \dfrac{1}{10}. \end{align} \begin{align} Im(2+4i)^{-1} & = Im(z^{-1}) = -\dfrac{Im(z)}{|z
Question 2, Exercise 1.4
73 Hits, Last modified: 5 months ago
2(i)===== Write the complex number $\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\left(\cos \dfrac{\pi}{3}+i \sin \dfrac{\pi}{3}\right)$ in rectangular form. ** Solution. ** Let $z_1=\cos \dfrac{\pi}{
Question 3, Exercise 1.1
48 Hits, Last modified: 5 months ago
====Question 3(i)==== Simplify the following $\dfrac{(2+i)(3-2i)}{1+i}$ **Solution.** \begin{align}&\dfrac{(2+i)(3-2i)}{1+i}\\ =&\dfrac{6-2i^2+3i-4i}{1+i}\\ =&\dfrac{8-i}{1+i}\\ =&\dfrac{8-i}{1+i}\times \dfrac{1-i}{1-i}\\ =&\dfrac{8+i^2-8i
Question 1, Exercise 1.4
47 Hits, Last modified: 5 months ago
ign} and \begin{align} \alpha & = \tan^{-1}\left|\frac{y}{x}\right| = \tan^{-1}\left|\frac{2\sqrt{3}}{2}\right|\\ & = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}. \end{align} Since the complex number \(... e argument \( \theta \) is: \[ \theta = \alpha = \frac{\pi}{3}. \] Hence \[ 2 + i 2 \sqrt{3} = 4 \left(
Question 8, Exercise 1.4
44 Hits, Last modified: 5 months ago
mplitude is $0.004 \mathrm{~mm}$ and angle is: $\dfrac{\pi}{4}$ ** Solution. ** Here we have $$x_{\max}=0.004, \quad \theta=\dfrac{\pi}{4}.$$ By using the formula \begin{align} x&=x_{\max} e^{i\theta} \\ &=0.004 e^{i\dfrac{\pi}{4}} \\ &=\frac{4}{1000} \left(\cos\left(\dfrac{\pi}{4}\right) +i \sin\left(\dfrac{\pi}{4}\right)\r
Question 3, Exercise 1.3
37 Hits, Last modified: 5 months ago
uestion 3(i)==== Solve the quadratic equation: $\dfrac{1}{3} z^{2}+2 z-16=0$. **Solution.** Given \begin{align}&\dfrac{1}{3}z^{2}+2 z-16=0\\ \implies &z^{2} + 6z - 48 =... \end{align} Apply the quadratic formula: $$ z = \dfrac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a},$$ where $$a = 1... {and}\quad c = -48.$$ Then \begin{align} z& = \dfrac{{-6 \pm \sqrt{36-4(1)(-48)}}}{2 \cdot 1} \\ & = \
Question 6(i-ix), Exercise 1.4
36 Hits, Last modified: 5 months ago
+i \sin 315^{\circ}\right) \\ =& \sqrt{2} \left(\dfrac{1}{\sqrt{2}}-\dfrac{i}{\sqrt{2}} \right) \\ =& 1-i. \end{align} =====Question 6(ii)===== Write a given ... 10^\circ + i \sin 210^\circ\right) \\ =& 5\left(-\frac{\sqrt{3}}{2} - \frac{1}{2}i\right) \\ =& -\frac{5\sqrt{3}}{2} - \frac{5}{2}i \end{align*} =====Question
Question 2, Exercise 1.3
28 Hits, Last modified: 5 months ago
==== Solve the equation by completing square: $-\dfrac{1}{2} z^{2}-5 z+2=0$. **Solution.** \begin{align} -\dfrac{1}{2} z^{2} - 5z + 2& = 0 \end{align} Multiply th... .** \begin{align} 4z^{2} + 5z &= 14\\ z^{2} + \dfrac{5}{4}z& = \dfrac{14}{4} \\ (z + \dfrac{5}{8})^2 - (\dfrac{5}{8})^2 &=\dfrac{7}{2} \\ (z + \dfrac{5}{8})
Question 6(x-xvii), Exercise 1.4
27 Hits, Last modified: 5 months ago
er in the algebraic form: $7 \sqrt{2}\left(\cos \dfrac{5 \pi}{4}+i \sin \dfrac{5 \pi}{4}\right)$ ** Solution. ** //Do yourself as previous parts.// =====Que... r in the algebraic form: $10 \sqrt{2}\left(\cos \dfrac{7 \pi}{4}+i \sin \dfrac{7 \pi}{4}\right)$ ** Solution. ** //Do yourself as previous parts.// =====
Question 4, Exercise 1.1
24 Hits, Last modified: 5 months ago
l number $x$ and $y$ in each of the following: $\dfrac{x}{(1+i)}+\dfrac{y}{1-2i}=1$ **Solution.** \begin{align}&\dfrac{x}{(1+i)}+\dfrac{y}{1-2i}=1\\ \implies &\dfrac{x(1-2i)+y(1+i)}{(1+i)(1-2i)}=1\\ \implies &\dfrac{x-i2x+
Question 10, Exercise 1.2
23 Hits, Last modified: 5 months ago
+2 i$ and $z_{2}=1-3 i$ verify: $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$. **Solution.** Given \[z_1 = -3 + 2i, \quad z_2 = 1 - 3i\] Then \begin{align} \frac{z_1}{z_2} &= \frac{-3 + 2i}{1 - 3i}\\ &= \frac{(-3 + 2i)(1 + 3i)}{(1 - 3i)(1 + 3i)} \\ &= \frac{-3 + 2i
Question 2, Exercise 1.1
17 Hits, Last modified: 5 months ago
*Solution.** \begin{align}&(3,2)\div(3,-1)\\ =&\dfrac{3+2i}{3-i}\\ =&\dfrac{3+2i}{3-i}\times\dfrac{3+i}{3+i}\\ =&\dfrac{(3+2i)(3+i)}{3^2-i^2}\\ =&\dfrac{9+2i^2+6i+3i}{9+1}\\ =&\dfrac{9-2+9i}{10}\\ =&\df
Question 1, Exercise 1.3
16 Hits, Last modified: 5 months ago
ze the polynomial into linear functions: $z^{2}+\dfrac{3}{25}$. **Solution.** \begin{align} & z^2 + \dfrac{3}{25} \\ = & z^2 - \left(\dfrac{\sqrt{3}}{5} i \right)^2 \\ = & \left(z + \dfrac{\sqrt{3}}{5}i\right)\left(z - \dfrac{\sqrt{3}}{5}i\rig
Question 7, Review Exercise
16 Hits, Last modified: 5 months ago
Question 8, Exercise 1.2
14 Hits, Last modified: 5 months ago
Question 2, Review Exercise
13 Hits, Last modified: 5 months ago
Question 1, Exercise 1.1
12 Hits, Last modified: 5 months ago
Question 4, Exercise 1.4
12 Hits, Last modified: 5 months ago
Question 1, Review Exercise
11 Hits, Last modified: 5 months ago
Question 6, Exercise 1.1
10 Hits, Last modified: 5 months ago
Question 6, Exercise 1.2
10 Hits, Last modified: 5 months ago
Question 7, Exercise 1.1
9 Hits, Last modified: 5 months ago
Question 5, Exercise 1.1
8 Hits, Last modified: 5 months ago
Question 9, Exercise 1.4
8 Hits, Last modified: 5 months ago
Question 5, Review Exercise
8 Hits, Last modified: 5 months ago
Question 8, Review Exercise
7 Hits, Last modified: 5 months ago
Question 3, Exercise 1.2
6 Hits, Last modified: 5 months ago
Question 3, Exercise 1.4
6 Hits, Last modified: 5 months ago
Question 10, Exercise 1.4
4 Hits, Last modified: 5 months ago
Question 6, Review Exercise
4 Hits, Last modified: 5 months ago
Question 4, Review Exercise
2 Hits, Last modified: 5 months ago
Question 4, Exercise 1.2
1 Hits, Last modified: 5 months ago