MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Ends with
  • Exact match
  • Starts with
  • Ends with
  • Contains
@matric
  • Any namespace
  • matric:9th_science (10)
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

Exercise 6.2 @matric:9th_science
221 Hits, Last modified: 5 months ago
ify as rational expression ====Question 1:==== $\frac{x^2-x-6}{x^2-9}+\frac{x^2+2x-24}{x^2-x-12}$\\ **Solution:**\\ $\begin{align} \frac{x^2-x-6}{x^2-9}&+\frac{x^2+2x-24}{x^2-x-12}\\ &=\frac{x^2-3x+2x-6}{(x)^2-(3)^2}+\frac{x^2+6x-4x-24}{x^2
Exercise 2.6 (Solutions) @matric:9th_science:unit_02
148 Hits, Last modified: 5 months ago
d write your answer in the form of $a+ib$ (i) $\frac{-2}{1+i}$\\ (ii) $\frac{2+3i}{4-i}$\\ (iii) $\frac{9-7i}{3+i}$\\ (iv) $\frac{2-6i}{3+i}-\frac{4+i}{3+i}$\\ (v) $({1+i}/{1-i})^2$\\ (vi) $\frac{1}{(2+3i)(1
Review exercise @matric:9th_science
77 Hits, Last modified: 5 months ago
Quotient\\ **Answer:**\\ $c$\\ (xi) Simplify $\frac{a}{9a^2-b^2}+\frac{1}{3a-b}$= ---\\ (a) $\frac{4a}{9a^2-b^2}$ (b) $\frac{4a-b}{9a^2-b^2}$\\ (c) $\frac{4a+b}{9a^2-b^2}$ (d) $\frac{b}{9a
Exercise 6.3 @matric:9th_science
65 Hits, Last modified: 5 months ago
essions.\\ (i) $4x^2-12xy +9y^2$\\ (ii) $x^2-1+\frac{1}{4x^2}, (x\neq 0)$\\ (iii) $\frac{1}{16}x^2-\frac{1}{12}xy+ \frac{1}{36}y^2$\\ (iv) $4(a+b)^2-12(a^2-b^2)+9(a-b)^2$\\ (v) $\frac{4x^6-12x^3y^3+9y^6}{9x
Exercise 2.4 (Solutions) @matric:9th_science:unit_02
62 Hits, Last modified: 5 months ago
1==== Use law of exponent to simplify. * (i) $\frac{(243)^{\frac{-2}{3}}(32)^{\frac{-1}{5}}}{\sqrt(196)^{-1}}$ * (ii) $\left(2x^5y^{-4}\right)\left(-8x^{-3}y^2\right)$ * (iii) $\left(\frac{x^{-2}y^{-1}z^{-4}}{x^4y^{-3}z^0}\right)^{-3}$
Exercise 4.1 @matric:9th_science
51 Hits, Last modified: 5 months ago
xpressions are polynomials (Yes or No) (i) $3x^2+\frac{1}{x}-5$\\ (ii) $3x^3-4x^2-x\sqrt{x}+3$\\ (iii) $x^2-3x+\sqrt{2}$\\ (iv) $\frac{3x}{2x-1}+8$\\ **Solution:** (i) $3x^2+\frac{1}{x}-5$\\ $No (Reason:\frac{1}{x})$\\ (ii) $3x^3-4x^2-x\sqrt{x}+3$\\ $No (Reasons \sqrt{x})$\\ (i
Exercise 2.1 (Solutions) @matric:9th_science:unit_02
42 Hits, Last modified: 5 months ago
al and irrational numbers: (i) $\sqrt{3}$ (ii) $\frac{1}{6}$ (iii) $\pi$ (iv) $\frac{15}{2}$ (v) $7.25$ (vi)$\sqrt{29}$ **Solution**\\ * Rational: $\frac{1}{6}$, $\frac{15}{2}$, $7.25$ * Irrational: $\sqrt{3}$, $\pi$, $\sqrt{29}$ ====Question 2==== Conve
Exercise 2.3 (Solutions) @matric:9th_science:unit_02
22 Hits, Last modified: 5 months ago
(ii) $2^{35}$\\ * (iii) $-7^\frac{1}{3}$ * (iv) $y^\frac{-2}{3}$\\ **Solution**\\ * (i) $\sqrt[3]{-64} = -64^\frac{1}{3}$ ( Exponential form) * (ii) $2^\frac{3}{5} = \sqrt[5]{2}^{3}$ (Radical form) * (
Exercise 2.2 (Solutions) @matric:9th_science:unit_02
9 Hits, Last modified: 5 months ago
$5 + (-5) = 0$ ... ... ... * (viii) $7 \times \frac{1}{7} = 1$ ... ... ... * (ix) $a > b \Rightarro... ... (Additive inverse) * (viii) $7 \times \frac{1}{7} = 1$ ... ... ... (Multiplicative inverse)... sqrt{24} + 0 = \sqrt{24}$ ... ... ... * (ii) $\frac{-2}{3} \left( 5 + \frac{7}{2}\right) = \left(\frac{-2}{3}\right){5} + \left(\frac{-2}{3}\right)\left(\f
Exercise 6.1 @matric:9th_science
5 Hits, Last modified: 5 months ago
x+1)(x^2+1)\end{align}$\\ $\begin{align} q(x)&=\frac{2(x^4-1)(x+1)(x^2+1)}{x^3+x^2+x+1}\\&=\frac{2(x^4-1)(x+1)(x^2+1)}{x^2(x+1)+1(x+1)}\\&=\frac{2(x^4-1)(x+1)(x^2+1)}{(x+1)(x^2+1)}\\&=2(x^4-1) \end{al... x+3)(x-1)^2\end{align}$\\ $\begin{align} q(x)&=\frac{10(x^2-9)(x^2-3x+2)10x(x+3)(x-1)^2}{10(x+3)(x-1)}
Mathematics 10 (Science Group)
1 Hits, Last modified: 5 months ago
prove that the area of a sector of a circle is $\frac{1}{2}r^2 \theta$ The following Solutions was sen