MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Starts with
  • Exact match
  • Starts with
  • Ends with
  • Contains
@fsc-part1-ptb
  • Any namespace
  • fsc-part1-ptb:important-questions (13)
  • fsc-part1-ptb:mcq-bank (3)
  • fsc-part1-ptb:sol (3)
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Matching pagenames:

  • Ch 05: Partial Fraction

Fulltext results:

Exercise 1.1 (Solutions) @fsc-part1-ptb:sol:ch01
229 Hits, Last modified: 5 months ago
of inequality (order properties), field, rule of fractions. These notes are based on the new Student Le... mmutative property w.r.t. '+'. ---- (ii) $(a+1)+ \frac{3}{4}= a+(1+\frac{3}{4})$ **Property:** Associative property w.r.t. '+'. ---- (iii) $(\sqrt{3}+\sqrt{... cative property. ---- (v) $a>b \quad \Rightarrow \frac{1}{a}<\frac{1}{b}$. **Property:** Multiplicative
MCQs: Ch 04 Quadratic Equations @fsc-part1-ptb:mcq-bank
53 Hits, Last modified: 5 months ago
ormula for $ax^2+bx+c=0$, $a\neq 0$ is - $x= \frac{b \pm \sqrt{b^2-4ac}}{a}$ - $x= \frac{-b \pm \sqrt{b^2+4ac}}{2a}$ - $x= \frac{-b \pm \sqrt{4ac-b^2}}{2a}$ - $x= \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ - A quadratic equation which
MCQs: Ch 01 Number Systems @fsc-part1-ptb:mcq-bank
37 Hits, Last modified: 5 months ago
$z=(1,3)$ then $z^{-1}= $ - $(\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$ - $(-\displaystyle{\frac{1}{10}},\displaystyle{\frac{3}{10}})$ - $(\displaystyle{\frac{1}{10}},-\displaystyle{\frac{3}{10}})
Definitions: FSc Part 1 (Mathematics): PTB
34 Hits, Last modified: 5 months ago
** A number which can be written in the form of $\frac{p}{q}$, where $p,q \in \mathbb{Z}$, $q\neq 0$, is... l number which cannot be written in the form of $\frac{p}{q}$, where $p,q \in \mathbb{Z}$, $q\neq 0$, i... al number because it can be converted into common fraction. * **Non-terminating decimal or non-recurr... g. it is not possible to convert it into a common fraction. Thus non-terminating, non-recurring decimals
Exercise 1.2 (Solutions) @fsc-part1-ptb:sol:ch01
33 Hits, Last modified: 5 months ago
tion 4(iv)** Simplify: $\displaystyle {{(-1)}^{-\frac{21}{2}}}$ **Solution** \begin{align} (-1)^{-\frac{21}{2}}&=\frac{1}{(-1)^\frac{21}{2}}=\frac{1}{[(-1)^\frac{1}{2}]^{21}}\\ &= \frac{1}{i^{21}}=\frac{1}{(i^2)^{10}\cdot
Ch 10: Trigonometric Identities @fsc-part1-ptb:important-questions
31 Hits, Last modified: 5 months ago
rc}\sin 30^{\circ}\sin 50^{\circ}\sin 70^{\circ}=\frac{1}{16}$ --- // BISE Gujrawala(2015)// * Prove that $\sin(\frac{\pi}{4}-\theta)\sin(\frac{\pi}{4}+\theta)=\frac{1}{2}\csc^2\theta$ --- // BISE Gujrawala(2017)// * Prove that $\sin(\theta+\fra
Ch 08: Mathematical Induction and Binomial Theorem @fsc-part1-ptb:important-questions
28 Hits, Last modified: 5 months ago
-group> * Using binomial theorem,expand $\left(\frac{x}{2}-\frac{2}{x^2}\right)$ --- // BISE Gujranwala(2015)// * Find the $6$th term in the expansion of $\left( x^2-\frac{3}{2x}\right)$ --- // BISE Gujranwala(2015)// *... 2015)// * Use binomial theorem to show that $1+\frac{1}{4}+\frac{1.3}{4.8}+\frac{1.3.5}{4.8.12},...=\s
Ch 06: Sequences and Series @fsc-part1-ptb:important-questions
26 Hits, Last modified: 5 months ago
Sequences and Series ====== <list-group> * If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in $G.P$. Show that $r=\pm \sqrt{\frac{a}{c}}$ --- //BISE Gujranwala(2015),BISE Sargodha(20
Multiple Choice Questions (MCQs)
21 Hits, Last modified: 5 months ago
* integer * none of these - Golden rule of fractions is that for $K \neq o, \frac{a}{b}=$ * $\frac{ab}{k}$ * $\frac{k}{ab}$ * $\frac{kb}{ka}$ * $\frac{ka}{kb}$ - Geometrically, the modulu
Ch 05: Partial Fraction @fsc-part1-ptb:important-questions
21 Hits, Last modified: 5 months ago
====== Ch 05: Partial Fraction ====== <list-group> * Resolve $\frac{1}{(x^2+1)(x+1)}$ into partial fraction --- //BISE Gujrawala(2015)// * Resolve the following into partial fractions $\frac{2x^4}{(x-3)(x+2)^2}$ --- //BISE Gu
Ch 12: Applications of Trigonometry @fsc-part1-ptb:important-questions
20 Hits, Last modified: 5 months ago
ry ====== <list-group> * Find the value of $tan\frac{\alpha}{2}$ in term of $s$ --- //BISE Gujrawala(2... //BISE Gujrawala(2015)// * Show that $r_1=stan\frac{\alpha}{2}$ --- //BISE Gujrawala(2015)// * Defi... 30$ --- //BISE Gujrawala(2017)// * Prove that $\frac{1}{r^2}+\frac{1}{{r_1}^2}+\frac{1}{{r_2}^2}+\frac{1}{{r_3}^2}=\frac{a^2+b^2+c^2}{\triangle^2}$ --- //BI
Ch 13: Inverse Trigonometry Functions @fsc-part1-ptb:important-questions
14 Hits, Last modified: 5 months ago
=== <list-group> * Find the value of $cos^{-1}(\frac{1}{2})$ --- //BISE Gujrawala(2015)// * Prove that $2tan^{-1}(\frac{1}{3})+tan^{-1}(\frac{1}{7})=\frac{\pi}{4}$ --- //BISE Gujrawala(2015), FBISE(2016)// * Prove that $sin^{-1}(\frac{1}{\sqrt
Trigonometric Formulas
13 Hits, Last modified: 5 months ago
}}\theta }$ </col><col sm="6"> * ${{\sin }^{2}}\frac{\theta }{2}=\dfrac{1-\cos \theta }{2}$ * ${{\cos }^{2}}\frac{\theta }{2}=\dfrac{1+\cos \theta }{2}$ * ${{\tan }^{2}}\frac{\theta }{2}=\dfrac{1-\cos \theta }{1+\cos \theta ... col sm="6"> * $\sin \theta +\sin \phi \,=2\sin \frac{\theta +\phi }{2}\,\,\cos \frac{\theta -\phi }{2}
Ch 09: Fundamental of Trigonometry @fsc-part1-ptb:important-questions
13 Hits, Last modified: 5 months ago
gonometric functions of $\theta$, If $cos \theta=\frac{12}{13}$ and the terminal side of the angle is no... rawala(2017)// * Verify $2 $ $\sin 45^{\circ} +\frac{1}{2}\cos 45^{\circ}=\frac{3}{\sqrt{2}}$ --- //BISE Gujrawala(2017), BISE Sargodha(2017)// * Prove th... 5cm$ --- //BISE Sargodha(2015)// * Prove that $\frac{cos\theta+sin\theta}{cos\theta-sin\theta}+\frac{c
Ch 01: Number Systems @fsc-part1-ptb:important-questions
9 Hits, Last modified: 5 months ago
_2$ --- // BISE Sargodha(2015)// * Simplify $\frac{2}{\sqrt{5}+\sqrt{-8}}$ in the form of $a+ib$ ... godha(2015)// * Simplify by justify each step $\frac{\frac{1}{a}-\frac{1}{b}}{1-\frac{1}{a}\frac{1}{b}}$ --- // BISE Sargodha(2015)// * Find multiplicative
Ch 04: Quadratic Equations @fsc-part1-ptb:important-questions
8 Hits, Last modified: 5 months ago
Ch 07: Permutation, Combination and Probability @fsc-part1-ptb:important-questions
6 Hits, Last modified: 5 months ago
Ch 14: Solutions of Trigonometric Equation @fsc-part1-ptb:important-questions
4 Hits, Last modified: 5 months ago
Ch 03: Matrices and Determinants @fsc-part1-ptb:important-questions
3 Hits, Last modified: 5 months ago
Definitions: FSc Part 1 (Mathematics): PTB by Aurang Zaib
2 Hits, Last modified: 5 months ago
Ch 11: Trigonometric Functions and Their Graphs @fsc-part1-ptb:important-questions
2 Hits, Last modified: 5 months ago
Important Questions: HSSC-I
1 Hits, Last modified: 5 months ago
Solution and Area of Oblique Triangle
1 Hits, Last modified: 5 months ago
MCQs: Ch 02 Sets, Functions and Groups @fsc-part1-ptb:mcq-bank
1 Hits, Last modified: 5 months ago
Exercise 2.8 (Solutions) @fsc-part1-ptb:sol:ch02
1 Hits, Last modified: 5 months ago