Search
You can find the results of your search below.
Fulltext results:
- Question 1 Exercise 7.3 @math-11-kpk:sol:unit07
- irst four terms in the expansion of (i) (1 - x) $\frac{1}{2}$ Solution: Using binomial theorem to tind the four terms $$ \begin{aligned} & (1-x)^{\frac{1}{2}}=1+\frac{1}{2} x+ \\ & \frac{\frac{1}{2}\left(-\frac{1}{2}-1\right)}{2 !}(-x)^2 \end{aligned} $$ $$ \begin{align
- Question 5 and 6 Exercise 7.3 @math-11-kpk:sol:unit07
- igher of $x$ may be negleeled. then show that $$ \frac{(8+3 x)^{\frac{2}{3}}}{(2+3 x) \sqrt{4-5 x}}=1-\frac{5 x}{8} $$ Solution: Given that: $$ \frac{\sqrt[4]{3}-3 x j^{\frac{2}{3}}}{2 \cdot 3 x+4-5 x} $$ $$ \b
- Question 2 Exercise 7.3 @math-11-kpk:sol:unit07
- & \sqrt{26}=\sqrt{25+1} \\ & =\sqrt{25} \sqrt{1+\frac{1}{25}}=5\left[1+\frac{1}{25}\right]^{\frac{1}{2}} \end{aligned} $$ Using binomial expansion $$ \begin{aligned} & \sqrt{26}=5\left[1+\frac{1}{25}\right]^{\frac{1}{2}} \\ & =5\left[1+\frac{
- Question 10 Exercise 7.3 @math-11-kpk:sol:unit07
- Q10 Find the sum of the following series: (i) $1-\frac{1}{2^2}+\frac{1.3}{2 !} \cdot \frac{1}{2^4}+\ldots$ Solution: The given series is binomial series. Let it be identica... of $(1+x)^n$ that is $$ \begin{aligned} & 1+n x+\frac{n(n-1)}{2 !} x^2 \\ & +\frac{n(n-1(n-2))}{3 !} x^
- Question 5, Exercise 10.1 @math-11-kpk:sol:unit10
- \Rightarrow \quad \sec \alpha &=-\sqrt{1+{{\left(\frac{3}{4} \right)}^{2}}}=-\sqrt{1+\frac{9}{16}}=-\sqrt{\frac{25}{16}\,}\\ \Rightarrow \quad \sec \alpha&=-\frac{5}{4} \end{align} Now $$\cos\alpha =\frac{1}{\sec \
- Question 12 Exercise 7.3 @math-11-kpk:sol:unit07
- (KPTB or KPTBB) Peshawar, Pakistan. Q12 If $2 y=\frac{1}{2^2}+\frac{1.3}{2 !} \cdot \frac{1}{2^4}+\frac{1.3 \cdot 5}{3 !} \cdot \frac{1}{2^6}+\ldots$ then show that $4 y^2+4 y-1=0$. Solution: W
- Question 13 Exercise 7.3 @math-11-kpk:sol:unit07
- hat $n^{\text {th }}$ root of $1+x$ is equal to $\frac{2 n+(n+1) x}{2 n+(n-1) x}$ Solution: We have show that $$ \begin{aligned} & (1+x)^{\frac{1}{n}}=\frac{2 n+(n+1) x}{2 n+(n-1) x} \\ & \frac{2 n+(n+1) x}{2 n+(n-1) x} \\ & =1+\frac{1}{n} x+\frac{\frac{1}{n}\
- Question 3 Exercise 7.3 @math-11-kpk:sol:unit07
- or KPTBB) Peshawar, Pakistan. Q3 Expand $\sqrt{\frac{1-x}{1+x}}$ up-to $x^3$. Solution: Given $\sqrt{\frac{1-x}{1+x}}$ $$ =(1-x)^{\frac{1}{2}}(1+x)^{-\frac{1}{2}} \text {. } $$ Applying binomial theorem, $$ \begin{aligned} & (1-x)^{\frac{
- Question 7 and 8 Exercise 7.3 @math-11-kpk:sol:unit07
- x^4$ and higher powers are neglected and $(1-x)^{\frac{1}{4}}+(1-x)^{\frac{1}{4}}=a-b x^2$ then find $a$, and $b$. Solution: We are taking L.H.S of the above ... the binomial theorem $$ \begin{aligned} & (1+x)^{\frac{1}{4}}+(1-x)^{\frac{1}{4}} \\ & =\left[1+\frac{x}{4}+\frac{\frac{1}{4}\left(\frac{1}{4}-1\right)}{2 !}
- Question 11 Exercise 7.3 @math-11-kpk:sol:unit07
- d (KPTB or KPTBB) Peshawar, Pakistan. Q11 If $y=\frac{1}{2^2}+\frac{1.3}{2 !} \cdot \frac{1}{2^4}+\frac{1 \cdot 3 \cdot 5}{3 !} \cdot \frac{1}{2^6}+\ldots$ then show that $y^2+2 y-1=0$. Solutio
- Important Questions
- rc}\sin 30^{\circ}\sin 50^{\circ}\sin 70^{\circ}=\frac{1}{16}$ --- // BISE Gujrawala(2015)// * Prove that $\sin(\frac{\pi}{4}-\theta)\sin(\frac{\pi}{4}+\theta)=\frac{1}{2}\csc^2\theta$ --- // BISE Gujrawala(2017)// * Prove that $\sin(\theta+\fra
- Question 9 Exercise 7.2 @math-11-kpk:sol:unit07
- right. \\ & =12^{2 n}\left(\begin{array}{ll} 1 & \frac{y}{12} \end{array}\right)^{31} \end{aligned} $$ Now we theck $\frac{(n+1) \cdot x}{1+|x|}$ for $\left(\frac{1}{12}\right)^2 \cdot$ Here $n=20$ and $\left.\left|x^{\prime}=\right|-\frac{y}{12} \right\rvert\,=\frac{1}{3}$ for $y=4$ $\Ri
- Question, Exercise 10.1 @math-11-kpk:sol:unit10
- &=-\sqrt{1-\sin^2\alpha}\\ &=-\sqrt{1-{{\left(-\frac{4}{5} \right)}^{2}}}\\ &=-\sqrt{1-\dfrac{16}{25}}... dfrac{25}{169}}\\ \Rightarrow \quad \sin \beta &=\frac{5}{13}.\end{align} Now \begin{align}\sin (\alpha... pha\cos \beta+\cos \alpha\sin \beta \\ &=\left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right)+\left(-\frac{3}{5}\right)\left(\frac{5}{13}\right)\\ &=\dfrac{4
- Question 3, Exercise 10.1 @math-11-kpk:sol:unit10
- u&=\sqrt{1-{{\sin }^{2}}u}\\ &=\sqrt{1-{{\left( \frac{3}{5} \right)}^{2}}}\\ &=\sqrt{1-\dfrac{9}{25}}\,... sqrt{\dfrac{9}{25}}\\ \Rightarrow \,\,\,\cos v &=\frac{3}{5}\end{align} Now \begin{align}\cos \left( u+v \right)&=\cos u\cos v-\sin u\sin v\\ &=\frac{4}{5}.\frac{3}{5}-\frac{3}{5}.\frac{4}{5}\\ &=\dfrac{12}{25}-\frac{12}{25}\\ \cos \left( u+v \right)&=0
- Question 2, Exercise 10.1 @math-11-kpk:sol:unit10
- gn} \begin{align} \Rightarrow \quad \sin \left( \frac{\pi }{3}-\frac{\pi }{4} \right) & =\sin \frac{\pi }{3}\cos \frac{\pi }{4}-\cos \frac{\pi }{3}\sin \frac{\pi }{4} \\ &=\left( \frac{\sqrt{3}}{2} \righ