Search
You can find the results of your search below.
Fulltext results:
- Question 1, Exercise 9.1
- m value $(M) = 4$ \\ and minimum value $(m) = 0$. GOOD **Alternative Method:** Given: $$y=2-2 \opera... ximum value (M) = 4 \\ and mimimum value (m) = 0. GOOD =====Question 1(ii)===== Find the maximum an... 7}{6}$ \\ and minimum value $(m) = \dfrac{1}{6}$. GOOD **Alternative Method:** Given: $$y=\dfrac{2}{... 7}{6}$ \\ and mimimum value $(m) = \dfrac{1}{6}$. GOOD =====Question 1(iii)===== Find the maximum and
- Question 3, Exercise 9.1
- { is integer} \right\}$ Range of $y=\mathbb{R}$. GOOD =====Question 3(v)===== Find domain and range: ... t{ is integer}\right\}$ Range of $y=\mathbb{R}$. GOOD =====Question 3(vi)===== Find domain and range... right\}$ Range: $y\leq -1 \text{ and } y\geq 1$. GOOD ====Go to ==== <text align="left"><btn type="primary">[[math-11-nbf:sol:unit09:ex9-1-p2|< Quest
- Question 6, Exercise 9.1
- align*} Hence period of $6 \sec(2 x-3)$ is $\pi$. GOOD =====Question 6(ii)===== Find the period: $y=\c... ce period of $\cos (5 x+4)$ is $\dfrac{2\pi}{5}$. GOOD =====Question 6(iii)===== Find the period: $y=\... 75 \cos x$ ** Solution. ** FIXME (problem) ====Go to ==== <text align="left"><btn type="primary">[
- Question 2 and 3, Review Exercise
- \ & = \sec^2 x - \csc^2 x \\ & = RHS \end{align*} GOOD =====Question 3(ii)===== Verify: $\dfrac{\sec^... & = \sec^2 x - \tan^2 x \\ & = RHS \end{align*} GOOD =====Question 3(iii)===== Verify: $\dfrac{\sin... s t} = \csc (1+\cos^2 t)$ ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 2, Exercise 9.1
- ) = 1$ \\ and minimum value $(m) = \dfrac{1}{7}$. GOOD =====Question 2(ii)===== Find the maximum and m... $ \\ and minimum value $(m) = \dfrac{5}{17}$. ====Go to ==== <text align="left"><btn type="primary">[
- Question 4(i-iv), Exercise 9.1
- d{align*} Hence, the given function is odd. ====Go to ==== <text align="left"><btn type="primary">[
- Question 4(v-viii), Exercise 9.1
- end{align*} Thus, the given function is odd. ====Go to ==== <text align="left"><btn type="primary">[
- Question 5(i-v), Exercise 9.1
- os} \frac{\mathrm{x}}{2}$ ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 5(vi-x), Exercise 9.1
- torname{Sin} \frac{x}{2}$ ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 7 & 8, Exercise 9.1
- pi]$ on the same scale. ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 9, Exercise 9.1
- graphically: $\tan x=x$ ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 10, Exercise 9.1
- ansformed Sine function. ** Solution. ** ====Go to ==== <text align="left"><btn type="primary">[
- Question 2 and 3,Review Exercise
- deral Textbook Board, Islamabad, Pakistan. ====Go to ==== <text align="left"><btn type="primary">[
- Question 4, Review Exercise
- deral Textbook Board, Islamabad, Pakistan. ====Go to ==== <text align="left"><btn type="primary">[
- Question 1,Review Exercise
- llapsed="true">%%(a)%%: $25$</collapse> ====Go to ==== <text align="right"><btn type="success"