Search
You can find the results of your search below.
Fulltext results:
- Question 1 Exercise 5.1
- ] \\ & =n[16 n^3-16 n^2-2 n+3]\end{align} ====Go To==== <text align="right"><btn type="success">[[
- Question 2 & 3 Exercise 5.1
- + \\ & \ldots+99^2=156850 . \end{aligned} $$ ====Go To==== <text align="left"><btn type="primary">[[m
- Question 4 & 5 Exercise 5.1
- \ & =\dfrac{n}{6}(2 n^2+3 n+7)\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 6 Exercise 5.1
- &=\dfrac{n(n+1)(n+2) (n+3)}{4}\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 7 & 8 Exercise 5.1
- =\dfrac{n}{3}(32 n^2+54 n+25)\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 9 Exercise 5.1
- \\ &=4^{n+1}-4-n(n+1)(n^2- n-1)\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 1 Exercise 5.2
- x\dfrac{(1-(-x))^{n-1}}{(1+x)^2}\end{align} ====Go To==== <text align="right"><btn type="success">[[
- Question 2 & 3 Exercise 5.2
- T_n=(n)\cdot(\dfrac{1}{2})^{n-1}\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 4 & 5 Exercise 5.2
- & \Rightarrow r=\dfrac{17}{35} \end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 1 Exercise 5.3
- 2+1&;\dfrac{n}{2}(2 n^2+3 n+3)\end{align} ====Go To==== <text align="right"><btn type="success">[[
- Question 2 Exercise 5.3
- {Hence}\quad 3 n^2+n&;n(n+1)^2\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 3 Exercise 5.3
- n^2+3 n;\dfrac{n}{3}(n+1)(n+5)\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 4 Exercise 5.3
- n-1}+2; \dfrac{1}{2}(3^n-1)+2 n\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 5 Exercise 5.3
- \quad 3(2^n-1);3(2^{n+1}-n-2)\end{align} ====Go To==== <text align="left"><btn type="primary">[[m
- Question 6 Exercise 5.3
- -1}+27; \dfrac{(5^n-1)}{4}+27 n\end{align} ====Go To==== <text align="left"><btn type="primary">[[m