Search
You can find the results of your search below.
Fulltext results:
- Question 2, Exercise 10.1
- )}\\ &=\dfrac{\sqrt{2}+\sqrt{6}}{4}\end{align} ===Go to=== <text align="left"><btn type="primary">[[ma
- Question 8, Exercise 10.1
- theta -\phi \right)}\\ &=R.H.S.\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question11 and 12, Exercise 10.1
- gamma +\cot \gamma \cot \alpha =1.\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question 13, Exercise 10.1
- \sqrt{2}} \text{ and } r=\sqrt{2}.\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question 1, Exercise 10.2
- x solid black]{\tan 2\theta=-\dfrac{5}{12}}$$ ====Go to==== <text align="right"><btn type="success">[[
- Question 2, Exercise 10.2
- olid black]{\tan 2\theta=-\dfrac{120}{119}}$$ ====Go to==== <text align="left"><btn type="primary">[[m
- Question 3, Exercise 10.2
- os \dfrac{\theta }{2}=\dfrac{1}{\sqrt{5}}}$$ ====Go to==== <text align="left"><btn type="primary">[[m
- Question 4 and 5, Exercise 10.2
- d black]{\cos\dfrac{2\pi}{3}=-\dfrac{1}{2}}$$ ====Go to==== <text align="left"><btn type="primary">[[m
- Question 6, Exercise 10.2
- }}=\dfrac{\sqrt{2+\sqrt{3}}}{2}\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question 7, Exercise 10.2
- \sin 2\theta \cos 2\alpha =R.H.S.\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question 8 and 9, Exercise 10.2
- ot\theta}{3\cot^2\theta -1}=R.H.S.\end{align} ====Go to ==== <text align="left"><btn type="primary">[[
- Question 1, Exercise 10.3
- 2}=\dfrac{1}{2}\left( \cos P-\cos Q \right)$$ ====Go to==== <text align="right"><btn type="success">[[
- Question 2, Exercise 10.3
- os \dfrac{A}{2} \cos\dfrac{B}{2}.\end{align} ====Go to==== <text align="left"><btn type="primary">[[m
- Question 3, Exercise 10.3
- {2}}{4-2}\\ &=3+2\sqrt{2}=R.H.S.\end{align} ====Go to ==== <text align="left"><btn type="primary">[[
- Question 5, Exercise 10.3
- \circ }}\\ &=\dfrac{1}{16}=R.H.S.\end{align} ====Go to ==== <text align="left"><btn type="primary">[[