Search
You can find the results of your search below.
Fulltext results:
- Question 5(iii) & 5(iv) Exercise 3.5
- ====== Question 5(iii) & 5(iv) Exercise 3.5 ====== Solutions of Question 5(iii) & 5(iv) of Exercise 3.5 of Unit 03: Vectors. Th... TB or KPTBB) Peshawar, Pakistan. =====Question 5(iii)===== Let $\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \... olution==== We have already calculated L.H.S in (ii) that\\ \begin{align}|\vec{a} \times \vec{b}|^2&=
- Question 1, Exercise 3.2
- \\ &=-\hat{i}+\hat{j}\end{align} =====Question.1(ii)===== If $\vec{a}=3\hat{i}-5\hat{j}$ and $\vec{b}... &=13\hat{i}-21\hat{j}\end{align} =====Question.1(iii)===== If $\vec{a}=3\hat{i}-5\hat{j}$ and $\vec{b... } …(i)\\ |\vec{b}|&=\sqrt(-2)^2+(3)^2=\sqrt{13} …(ii)\end{align} Subtracting (i) from (ii). We get $$|\hat{a}|-|\hat{b}|=\sqrt{34}-\sqrt{13}$$ =====Quest
- Question 5(i) & 5(ii) Exercise 3.5
- ====== Question 5(i) & 5(ii) Exercise 3.5 ====== Solutions of Question 5(i) & 5(ii) of Exercise 3.5 of Unit 03: Vectors. This is uni... a} \times \vec{b}\perp \vec{b}$. =====Question 5(ii)===== Let $\vec{a}=a_1 \hat{i}+a_2 \hat{j}+a_3 \h... "><btn type="success">[[math-11-kpk:sol:unit03:ex3-5-p4|Question 5(iii) & 5(iv) >]]</btn></text>
- Question 1, Exercise 3.3
- times 3)\\ & =3-4-3=-4\end{align}. =====Question(ii)===== If $\vec{a}=3 \hat{i}+4 \hat{j}-\hat{k}$, $... times-5)\\ & =6+4+5=15\end{align}. =====Question(iii)===== If $\vec{a}=3 \hat{i}+4 \hat{j}-\hat{k}$, ... t(\vec{b}+\vec{c})&=11\end{align}. =====Question(iii)===== If $\vec{a}=3 \hat{i}+4 \hat{j}-\hat{k}$,
- Question 2, Exercise 3.2
- is is the required unit vector. =====Question 2(ii)===== Find unit vector having the same direction ... ich is the required unit vector. =====Question 2(iii)===== Find unit vector having the same direction
- Question 3 & 4, Exercise 3.2
- nd $\hat{j}$, we have, $$p+5q=1…(i)$$ $$2p-q=-9 …(ii)$$ Multiply $2$ by (i) and subtract (ii) from (i). We have \[\begin{array}{ccc} 2p&+10q&=2 \\ \math
- Question 7, Exercise 3.2
- 3$ and magnitude is $3\sqrt{2}$. =====Question 7(ii)===== Find the components and the magnitude of $\... ====Solution==== Do yourself. =====Question 7(iii)===== Find the components and the magnitude of $
- Question 7, Exercise 3.2
- 3$ and magnitude is $3\sqrt{2}$. =====Question 7(ii)===== Find the components and the magnitude of $\... ====Solution==== Do yourself. =====Question 7(iii)===== Find the components and the magnitude of $
- Question 2 and 3 Exercise 3.3
- row \theta=90^{\prime \prime}$$. =====Question 3(ii)===== Find the angles between the pairs of vector... text{(approximately)}\end{align} =====Question 3(iii)===== Find the angles between the pairs of vecto
- Question 1 Exercise 3.4
- 0) \hat{i}=3 \hat{i}.\end{align} =====Question 1(ii)===== Find the cross product $(2 \hat{i}-3 \hat{j... 3 \hat{i}-2 \hat{j} .\end{align} =====Question 1(iii)===== Find the cross product $(2 \hat{i}-3 \hat{
- Question 4 Exercise 3.4
- 2 \hat{j}+9 \hat{k} .\end{align} =====Question 4(ii)===== If $\vec{a}=3 \hat{i}-6 \hat{j}+5 \hat{k},\... 6 \hat{j}+3 \hat{k} .\end{align} =====Question 4(iii)===== If $\vec{a}=3 \hat{i}-6 \hat{j}+5 \hat{k},
- Question 7 Exercise 3.5
- e given vectors become coplanar. =====Question 7(ii)===== For what value of $c$ the following vectors... e given vectors become coplanar. =====Question 7(iii)===== For what value of $c$ the following vector
- Question 1 Review Exercise 3
- pse id="a1" collapsed="true">(a): $0$</collapse> ii. The vectors $3 \hat{i}+5 \hat{j}+2 \hat{k}$, $2 ... 2" collapsed="true">(a): Equilateral </collapse> iii. Two vectors $\hat{i}-2 \hat{i}+\hat{j}+3 \hat{k
- Question 11, Exercise 3.2
- \dfrac{27}{7}\hat{j}\end{align} =====Question 11(ii)===== Find the position vectors of the point of d
- Question 6 Exercise 3.3
- uad m&=\dfrac{26}{27}\end{align} =====Question 6(ii)===== Let $\vec{a}=\hat{i}+3 \hat{j}-4 \hat{k}$ a