Search
You can find the results of your search below.
Fulltext results:
- Question 2(i, ii, iii, iv and v) Exercise 8.3
- ====== Question 2(i, ii, iii, iv and v) Exercise 8.3 ====== Solutions of Question 2(i, ii, iii, iv and v) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbo
- Question 8(i, ii & iii) Exercise 8.2
- ====== Question 8(i, ii & iii) Exercise 8.2 ====== Solutions of Question 8(i, ii & iii) of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mat
- Question 1(i, ii, iii & iv) Exercise 8.3
- ====== Question 1(i, ii, iii & iv) Exercise 8.3 ====== Solutions of Question 1(i, ii, iii & iv) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of
- Question 3(i, ii, iii, iv & v) Exercise 8.3
- ====== Question 3(i, ii, iii, iv & v) Exercise 8.3 ====== Solutions of Question 3(i, ii, iii, iv & v) of Exercise 8.3 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook
- Question 2, Review Exercise
- lign*} As $\theta$ is obtuse, so $\theta$ lies in II Q. This implies $\cos \theta <0$, thus $$\cos \th... phi)&=\frac{56}{65} \end{align*} =====Question 2(ii)===== Given that $\sin \theta=\dfrac{3}{5}, \sin ... lign*} As $\theta$ is obtuse, so $\theta$ lies in II Q. This implies $\cos \theta <0$, thus $$\cos \th... \ &= -\frac{56}{33} \end{align*} =====Question 2(iii)===== Given that $\sin \theta=\dfrac{3}{5}, \sin
- Question 5 and 6, Exercise 8.1
- \beta$ in QIII, find \\ (i) $\sin(\alpha-\beta)$ (ii) $\cos(\alpha-\beta)$ (iii) $\tan(\alpha-\beta)$. ** Solution. ** Given: $\cos\alpha=-\dfrac{7}{25}... -\frac{56}{425} =-\frac{416}{425} \end{align*} (ii) $\cos(\alpha-\beta)$ \begin{align*}\cos (\alpha-... }-\frac{192}{425} =-\frac{87}{425} \end{align*} (iii) $\tan(\alpha-\beta)$ \begin{align*}\tan(\alpha-
- Question 7, Exercise 8.1
- a=\dfrac{4}{3}$ find \\ (i) $\sin(\alpha+\beta)$ (ii) $\cos(\alpha+\beta)$ (iii) $\tan(\alpha+\beta)$. ** Solution. ** Given: $\sin \alpha=\dfrac{12}{13... rac{20}{65} \\ & = \dfrac{56}{65}. \end{align*} (ii) $\cos(\alpha + \beta)$ \begin{align*} \cos(\alph... frac{48}{65} \\ & = -\dfrac{33}{65}\end{align*} (ii) $\tan(\alpha + \beta)$ \begin{align*} \tan(\alph
- Question 8, Exercise 8.1
- <\beta<2 \pi$ find: \\ (i) $\csc (\alpha+\beta)$ (ii) $\sec (\alpha+\beta)$ (iii) $\cot (\alpha+\beta)$ ** Solution. ** Given: $\sin \alpha=\dfrac{3}{5... dfrac{16}{65}} \\ &= \frac{65}{16}. \end{align*} (ii) \begin{align*} \cos (\alpha + \beta) &= \cos \a... dfrac{63}{65}} \\ &= \frac{65}{63}. \end{align*} (iii) \begin{align*} \cot (\alpha + \beta) &= \frac{
- Question 7 Exercise 8.2
- 4\alpha}{8} \end{align*} GOOD =====Question 7(ii)===== Rewrite in terms of an expression containin... \cos 4\alpha\right) \end{align*} =====Question 7(iii)===== Rewrite in terms of an expression containi... "right"><btn type="success">[[math-11-nbf:sol:unit08:ex8-2-p6|Question 8(i, ii & iii) >]]</btn></text>
- Question 1, Exercise 8.1
- (2(90)-60) =-\tan 60^\circ$ GOOD ===== Question 1(ii)===== Find the value of $\cos (\alpha \pm \beta),... \\ & = \sqrt{3} \end{align*} ===== Question 1(iii)===== Find the value of $\cos (\alpha \pm \beta)
- Question 4, Exercise 8.1
- & = \cos 9\theta . \end{align*} ===== Question 4(ii)===== Rewrite as a single expression. $\cos 7 \th... \cos 5\theta . \end{align*} GOOD ===== Question 4(iii)===== Rewrite as a single expression. $\sin \lef
- Question 9, Exercise 8.1
- rac{1}{5\sqrt{2}}. \end{align*} ===== Question 9(ii)===== Given $\alpha$ and $\beta$ are obtuse angle... ac{7}{5\sqrt{2}}. \end{align*} ===== Question 9(iii)===== Given $\alpha$ and $\beta$ are obtuse angl
- Question 10, Exercise 8.1
- lpha = R.H.S \end{align*} GOOD ===== Question 10(ii)===== Verify: $\cos (\pi-\alpha)=-\cos \alpha$ ... pha \\ & = R.H.S. \end{align*} ===== Question 10(iii)===== Verify: $\cos \left(\alpha+\frac{\pi}{4}\
- Question 11, Exercise 8.1
- = 1 = R.H.S \end{align*} GOOD ===== Question 11(ii)===== Show that: $\dfrac{\sin \left(90^{\circ}+\a... an \alpha = -1$)} \end{align*} ===== Question 11(iii)===== Show that: $\tan \alpha+\tan \beta=\dfrac{
- Question 12, Exercise 8.1
- nd{align*} as required. GOOD ===== Question 12(ii)===== If $\alpha+\beta+\gamma=180^{\circ}$, prove... end{align*} as required. GOOD ===== Question 12(iii)===== If $\alpha+\beta+\gamma=180^{\circ}$, prov