Search
You can find the results of your search below.
Fulltext results:
- Question 2, Exercise 9.1
- value $(m) = \dfrac{1}{7}$. GOOD =====Question 2(ii)===== Find the maximum and minimum values of the ... {{ :math-11-nbf:sol:unit09:math-11-nbf-ex9-1-q2_ii_.png?400 |Graph of y}} **From the graph, we see ... nimum values is not appropriate. =====Question 2(iii)===== Find the maximum and minimum values of the... theta-5)}$ ** Solution. ** **Same as Question 2(ii), we see that given $\dfrac{1}{\frac{1}{3}-4 \sin
- Question 1,Review Exercise
- \sqrt{3}}{2}$ and the terminal arm of angle is in III quadrant. Then $\sin \theta=$\\ * $\frac{1... lapsed="true">%%(b)%%: $-\frac{1}{2}$</collapse> ii. The exact value of the trigonometric function $\... pse id="a2" collapsed="true">(a): $0$</collapse> iii. If $2 \sin \theta+\frac{1}{2}cosec \theta \thet
- Question 1, Exercise 9.1
- nd mimimum value (m) = 0. GOOD =====Question 1(ii)===== Find the maximum and minimum values of the ... value $(m) = \dfrac{1}{6}$. GOOD =====Question 1(iii)===== Find the maximum and minimum values of the
- Question 3, Exercise 9.1
- = \mathbb{R}$ Range $=[-7,7]$. =====Question 3(ii)===== Find domain and range: $y=\cos \frac{x}{3}$... = \mathbb{R}$ Range $=[-1,1]$. =====Question 3(iii)===== Find domain and range: $y=\sin \frac{2 x}{
- Question 4(i-iv), Exercise 9.1
- Thus the given function is odd. =====Question 4(ii)===== Check whether the function is odd or even: ... Thus the given function is even. =====Question 4(iii)===== Check whether the function is odd or even:
- Question 5(i-v), Exercise 9.1
- rname{Sin} x$ ** Solution. ** =====Question 5(ii)===== Draw the graph of each of the function: $y=... name{Cos} 3 x$ ** Solution. ** =====Question 5(iii)===== Draw the graph of each of the function: $y
- Question 6, Exercise 9.1
- of $6 \sec(2 x-3)$ is $\pi$. GOOD =====Question 6(ii)===== Find the period: $y=\cos (5 x+4)$ ** Solut... x+4)$ is $\dfrac{2\pi}{5}$. GOOD =====Question 6(iii)===== Find the period: $y=\cot 4 x+\sin \frac{5
- Question 9, Exercise 9.1
- n x=\cos x$ ** Solution. ** =====Question 9(ii)===== Solve graphically: $\cos x=x$ ** Solution. ** =====Question 9(iii)===== Solve graphically: $\sin x=x$ ** Solution
- Question 2 and 3, Review Exercise
- 2 x \\ & = RHS \end{align*} GOOD =====Question 3(ii)===== Verify: $\dfrac{\sec^4 x - \tan^4 x}{\sec^... x \\ & = RHS \end{align*} GOOD =====Question 3(iii)===== Verify: $\dfrac{\sin t}{1- \cos t}-\dfrac{
- Question 10(i-v), Review Exercise
- on 10(i)===== ** Solution. ** =====Question 10(ii)===== ** Solution. ** =====Question 10(iii)===== ** Solution. ** =====Question 10(iv)===== *