Search
You can find the results of your search below.
Fulltext results:
- Question 3, Exercise 2.1
- d (2), we have $$(AB)C=A(BC).$$ =====Question 3(ii)(a)===== If $A=\begin{bmatrix}1 & 3 \\ -1 & 4 \e... (2), we have $$A(B+C)=AB+AC.$$ =====Question 3(ii)(b)===== If $A=\begin{bmatrix} 1 & 3 \\ -1 & 4 \
- Question 1, Exercise 2.1
- \right]\\ &=[98].\end{align} =====Question 1(ii)===== Express as a single matrix $$\left[ \begin
- Question 5 & 6, Exercise 2.1
- end{matrix} \right]\end{align} =====Question 6(ii)===== Solve the matrix equations for $X.$ Find $2
- Question 8, Exercise 2.1
- \implies( A^t)^t&=A. \end{align} =====Question 8(ii)===== If $A=\begin{bmatrix}1 & 2 & 0\\3 & -1 & 4\
- Question 9, Exercise 2.1
- x} \right]$$ $$( AB)^t=B^tA^t$$ =====Question 9(ii)===== If $A= \begin{bmatrix}\quad 1 & 2 & 0 \\-1
- Question 12, Exercise 2.1
- ht]$$ $$( A+A^t )^t=( A+A^t )$$ =====Question 12(ii)===== Let $A=\begin{bmatrix}3 & 2 & 1 \\ 4 & 5 &
- Question 13, Exercise 2.1
- ht]$$ $$( A+A^t )^t=( A+A^t )$$ =====Question 13(ii)===== If $A$ is a square matrix of order $3$ then
- Question 2, Exercise 2.2
- ements of third column are zero. =====Question 2(ii)===== Without evaluating state the reasons for t
- Question 4, Exercise 2.2
- ight)\\ =&0+3-15=-12 \end{align} =====Question 4(ii)===== Evaluate the determinant $\left| \begin{mat
- Question 5, Exercise 2.2
- d{vmatrix} =R.H.S. \end{align} =====Question 5(ii)===== Show that $\begin{vmatrix}a & b & c\\1-3a &
- Question 6, Exercise 2.2
- ong R_3 \\ &=R.H.S. \end{align} =====Question 6(ii)===== Prov that $\left| \begin{matrix}1 & a & a^3
- Question 7, Exercise 2.2
- |=14911180-14911182$$ $$=-2$$ =====Question 7(ii)===== Evaluate $\left| \begin{matrix}81 & 82 & 83
- Question 11, Exercise 2.2
- 2$$ $$|A|=0$$ $A$ is singular. =====Question 11(ii)===== Identify singular and non-singular matrices
- Question 13, Exercise 2.2
- )+3(0)=9$$ $$-9x=9$$ $$x=-1$$ =====Question 13(ii)===== Solve for $x,$ $\left| \begin{matrix}-1 &
- Question 18, Exercise 2.2
- \right]$$ $$( A^{-1})^{-1}=A$$ =====Question 18(ii)===== $A$ and $B$ are non-singular matrices, the