Search
You can find the results of your search below.
Fulltext results:
- Question 13 Exercise 6.2
- align}\text{total number of permutations are} &=\left(\begin{array}{c} n \\ m_1, m_2, m_3 \end{array}\right)\\&=\left(\begin{array}{c} 10 \\ 4,2,2 \end{array}\right) \... \begin{align}\text{Number of permulations are} &=\left(\begin{array}{c} n \\ m_1, m_2, m_3 \end{array}\r... align}\text{total number of permutations are} & =\left(\begin{array}{c} n \\ m_1, m_2, m_3 \end{array}\r
- Question 7 Exercise 6.4
- begin{align}S&=\{(i, j) ; i, j=1,2,3,4,5,6\}\\ &=\left[\begin{array}{llllll} (1,1) & (1,2) & (1,3) & (1,... egin{align} S&=\{(i, j) ; i, j=1,2,3,4,5,6\}\\ &=\left[\begin{array}{llllll} (1,1) & (1,2) & (1,3) & (1,... egin{align} S&=\{(i, j) ; i, j=1,2,3,4,5,6\}\\ &=\left[\begin{array}{llllll} (1,1) & (1,2) & (1,3) & (1,... egin{align} S&=\{(i, j) ; i, j=1,2,3,4,5,6\}\\ &=\left[\begin{array}{llllll} (1,1) & (1,2) & (1,3) & (1,
- Question 12 Exercise 6.2
- nt words using all at a time are: \begin{align} \left(\begin{array}{c} n \\ m 1 \end{array}\right)&=\left(\begin{array}{l} 8 \\ 3 \end{array}\right) \\ & =\d... tal number of different words are: \begin{align} \left(\begin{array}{c} n \\ m_1, m_2, m_3 \end{array}\right)&=\left(\begin{array}{c} 10 \\ 2,3.2 \end{array}\right) \
- Question 3 & 4 Review Exercise 6
- $x^4 y^3 z^5$ can be arrange are \begin{align} & \left(\begin{array}{c} n \\ m_1, m_2, m_3 \end{array}\right)=\left(\begin{array}{c} 12 \\ 4,3,5 \end{array}\right)&=... =27,720 \end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:Re-
- Question 5 and 6 Exercise 6.2
- digit have to be filled by $2$ or $4$. So, we are left with $3$ numbers. Thus Unit digit: $E_1$ occurs ... dot 3 \cdot 2=12$$ ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 8 Exercise 6.5
- \begin{align}s&=(i i, j): i, j-1,2,3,4,5,6\}\\ &=\left[\begin{array}{llllll} (1.1) & (1.2) & (1.3) & (1.... }=\dfrac{7}{9}$$ ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 3 & 4 Exercise 6.1
- &=9 \end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 5 Exercise 6.1
- n+1)] \end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 4 Exercise 6.1
- hawar, Pakistan. ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 5 Exercise 6.1
- hawar, Pakistan. ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 3 and 4 Exercise 6.2
- 0,320\end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 7 and 8 Exercise 6.2
- \cdot 3 !=17280$ ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 9 Exercise 6.2
- 0+720+720=1956$. ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 10 Exercise 6.2
- 5880\end{align} ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6
- Question 11 Exercise 6.2
- $$100 + 25=125$$ ====Go To==== <text align="left"><btn type="primary">[[math-11-kpk:sol:unit06:ex6