MathCity.org Beta

This is beta site.

  • Home
  • FSc
  • MSc
≪ View Page

Search

You can find the results of your search below.

Contains
  • Exact match
  • Starts with
  • Ends with
  • Contains
@mathcraft
  • Any namespace
Any time
  • Any time
  • Past week
  • Past month
  • Past year
Sort by hits
  • Sort by hits
  • Sort by last modified

Fulltext results:

MathCraft: PDF to LaTeX file: Sample-01
21 Hits, Last modified: 5 months ago
wing means $$ \begin{aligned} & E(x, y ; r, s)=\left\{\dfrac{r\left(y^{s}-x^{s}\right)}{s\left(y^{r}-x^{r}\right)}\right\}^{\dfrac{1}{s-r}} \\ & E(x, y ; r, 0)=E(0, r)=\left\{\dfrac{y^{r}-x^{r}}{r(\ln y-\ln x)}\right\}^{1 /
MathCraft: PDF to LaTeX file: Sample-02
21 Hits, Last modified: 5 months ago
, b] \rightarrow \mathbb{R}$ is convex, then $$ f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int... val $(a, b)$ is continuous on $(a, b)$ and admits left and right derivative $f_{+}^{\prime}(x)$ and $f_{... line for $f(x)$ at any $x_{0} \in(a, b)$ : if $f\left(x_{0}\right)$ is differentiable in $x_{0}$, one has $r(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-