Search
You can find the results of your search below.
Fulltext results:
- Chapter 13: Inverse Trigonometric Functions
- \sin ^{ - 1}}A + {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} + B\sqrt {1 - {A^2}} } \rig... \sin ^{ - 1}}A - {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} - B\sqrt {1 - {A^2}} } \rig... \cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right)$ * ${\cos ^{ - 1}}A - {
- Chapter 14: Solutions of Trigonometric Equation
- \sin ^{ - 1}}A + {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} + B\sqrt {1 - {A^2}} } \rig... \sin ^{ - 1}}A - {\sin ^{ - 1}}B = {\sin ^{ - 1}}\left( {A\sqrt {1 - {B^2}} - B\sqrt {1 - {A^2}} } \rig... \cos ^{ - 1}}A + {\cos ^{ - 1}}B = {\cos ^{ - 1}}\left( {AB - \sqrt {\left( {1 - {A^2}} \right)\left( {1 - {B^2}} \right)} } \right)$ * ${\cos ^{ - 1}}A - {
- Chapter 01: Number System
- real and imaginary parts of (i) $(x+iy)^n$ (ii) $\left(\frac{x_1+iy_1}{x_2+iy_2}\right)^n, x_2+iy_2\neq