Search
You can find the results of your search below.
Fulltext results:
- MathCraft: PDF to LaTeX file: Sample-01
- wing means $$ \begin{aligned} & E(x, y ; r, s)=\left\{\dfrac{r\left(y^{s}-x^{s}\right)}{s\left(y^{r}-x^{r}\right)}\right\}^{\dfrac{1}{s-r}} \\ & E(x, y ; r, 0)=E(0, r)=\left\{\dfrac{y^{r}-x^{r}}{r(\ln y-\ln x)}\right\}^{1 /
- MathCraft: PDF to LaTeX file: Sample-02
- , b] \rightarrow \mathbb{R}$ is convex, then $$ f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int... val $(a, b)$ is continuous on $(a, b)$ and admits left and right derivative $f_{+}^{\prime}(x)$ and $f_{... line for $f(x)$ at any $x_{0} \in(a, b)$ : if $f\left(x_{0}\right)$ is differentiable in $x_{0}$, one has $r(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-