Search
You can find the results of your search below.
Fulltext results:
- Exercise 2.4 (Solutions)
- {\frac{-1}{5}}}{\sqrt(196)^{-1}}$ * (ii) $\left(2x^5y^{-4}\right)\left(-8x^{-3}y^2\right)$ * (iii) $\left(\frac{x^{-2}y^{-1}z^{-4}}{x^4y^{-3}z^0}\right)^{-3}$ * (iv) $\frac{\left(81\right)^n.3^5-\left(3\right)^{4n-1}\left(243\ri
- Exercise 2.2 (Solutions)
- = \sqrt{24}$ ... ... ... * (ii) $\frac{-2}{3} \left( 5 + \frac{7}{2}\right) = \left(\frac{-2}{3}\right){5} + \left(\frac{-2}{3}\right)\left(\frac{7}{2}\right)$ ... ... * (iii) $\pi + \left(-\pi\right) = 0$ ... ...
- Exercise 2.3 (Solutions)
- {array}{cl} \sqrt[4]{32} &= \sqrt[4]{{2}^5}\\ &= \left(2^{4}\times{2}\right)^\frac{1}{4}\\ &= \left(2^{4})^\frac{1}{4}\right)\times\sqrt[4]{2}\\ &= 2\sqrt[4]{... ) $$\begin{array}{cl} \sqrt[5]{\frac{3}{32}} &= \left(\frac{3}{{2^5}}\right)^\frac{1}{5}\\ &= \frac{\sq... n{array}{cl} \sqrt[3]{\frac{-8}{27}} &= \sqrt[3]{\left(\frac{-2^3}{3^3}\right)}\\ &= \left(\frac{-2}{3}\
- Exercise 2.5 (Solutions)
- (iv) $\left(-i\right)^8$ (v) $\left(-i\right)^5$ (vi) $i^{27}$ **