Question 1 Review Exercise 5
Solutions of Question 1 of Review Exercise 5 of Unit 05: Vectors. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.
Question 1
Chose the correct option. <panel> i. If $t_n=6 n+5$ then $t_{n+1}=$
- (a) $6 n-1$
- (b) $6 n+11$
- (c) $6 n+6$
- (d) $6 n-5$
<btn type=“link” collapse=“a1”>See Answer</btn>(b): $6 n+11$
ii. The sum to infinity of the series: $1+\dfrac{2}{3}+\dfrac{6}{3^2}+\dfrac{10}{3^3}+\dfrac{14}{3^4}+\ldots$
- (a) $6$
- (b) $2$
- (c) $3$
- (d) $4$
<btn type=“link” collapse=“a2”>See Answer</btn>©: $3$
iii. Sum the series:$1+2.2+3.2^2+\cdots+100.2^{\prime \prime}$
- (a) $99.2^{100}$
- (b) $100.2^{100}$
- (c) $99.2^{100}+1$
- (d) $1000.2^{100}$
<btn type=“link” collapse=“a3”>See Answer</btn>©: $99.2^{100}+1$
iv. The $n^{t h}$ term of the series: $1.2+2.3+3.4+\ldots$
- (a) $n^2-n$
- (b) $n^2+n$
- (c) $n^2$
- (d) None of these
<btn type=“link” collapse=“a4”>See Answer</btn>(b): $n^2+n$
v. Sum of $n$ terms of the series whose $n^{t h}$ term is $1+2^n$
- (a) $n \cdot 2^{n-1}$
- (b) $(n+1)+2^{n+1}$
- (c) $n+2(2^n-1)$
- (d) None of these
<btn type=“link” collapse=“a5”>See Answer</btn>©: $n+2(2^n-1)$
vi. Evaluate $\Sigma\left(3+2^r\right)$, where $r=1,2,3, \ldots, 10$
- (a) $2051$
- (b) $2049$
- (c) $2076$
- (d) $1052$
<btn type=“link” collapse=“a6”>See Answer</btn>©: $2076$
vii. What is the $n$ term of the series: $1+\dfrac{1+2}{2}+\dfrac{1+2+3}{3}+\ldots$
- (a) $\dfrac{n+1}{2}$
- (b) $\dfrac{n(n+1)}{2}$
- (c) $n^2-(n+1)$
- (d) $\dfrac{(n+1)(2 n+3)}{2}$
<btn type=“link” collapse=“a7”>See Answer</btn>(a): $\dfrac{n+1}{2}$
viii. Sum of $n$ terms of the series $1^3+3^3+5^3+7^3+\ldots$
- (a) $n^2(2 n^2-1)$
- (b) $2 n^3+3 n^2$
- (c) $n^3(n-1)$
- (d) $n^3+8 n+4$
<btn type=“link” collapse=“a7”>See Answer</btn>(a): $n^2(2 n^2-1)$
</panel>
Go To
<btn type=“success”>Question 2 & 3 ></btn>