Question 1, Review Exercise

Solutions of Question 1 of Review Exercise of Unit 05: Polynomials. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Question 1

Select the best matching option. Chose the correct option.
i. Factors of $-2-x+x^{2}$ are:

  • (a) $(x-2)(x-1)$
  • (b) $(x+1)(x+2)$
  • (c) $(x+2)(x-1)$
  • (d) $(x+1)(x-2)$
    <btn type=“link” collapse=“a1”>See Answer</btn>

    (d): $(x+1)(x-2)$

ii. Divide $9 y^{2}+9 y-10$ by $3 y-2$, then remainder is:

  • (a) $ 0$
  • (b) $1$
  • (c) $2$
  • (d) $3$
    <btn type=“link” collapse=“a2”>See Answer</btn>

    (a): $ 0$

iii. $\frac{x^{2}-x-9}{x-3}=x+2+\frac{?}{x-3}$

  • (a) $-27$
  • (b)$-3$
  • (c) $\frac{3}{x-3}+x+2$
  • (d) $ 3$
    <btn type=“link” collapse=“a3”>See Answer</btn>

    (b): $-3$

iv. If $3 x^{3}-2 x^{2}+5$ is divided by $x+1$, then $x+1$ will be its:

  • (a) divisor as well as factor
  • (b) dividend
  • (c) quotient
  • (d) remainder
    <btn type=“link” collapse=“a4”>See Answer</btn>

    (a): divisor as well as factor

v. If 2 is a zero of the polynomial $x^{3}+5 x^{2}-4 x+k$, then the value of $k$ will be:

  • (a) $-4$
  • (b) $-20$
  • (c) $20$
  • (d) $0$
    <btn type=“link” collapse=“a5”>See Answer</btn>

    (b): $-20$

vi. If $x-b$ is the factor of $q(x)$, then $\mathrm{q}(\mathrm{b})$ is:

  • (a) factor
  • (b) divisor
  • (c) remainder
  • (d) dividend
    <btn type=“link” collapse=“a6”>See Answer</btn>

    ©: remainder

vii. If the expression $2 x^{3}+3 p x^{2}-4 x$ has a remainder of 4 when divided by $x+2$, then $\mathbf{p}=$

  • (a) $-2$
  • (b) $ 1$
  • (c) $-1$
  • (d) $ 0$
    <btn type=“link” collapse=“a7”>See Answer</btn>

    (b): $ 1$

viii. If $f(x)$ is divided by $x-2$, then remainder is 12 . What is $f(2)$ ?

  • (a) $-12$
  • (b) $\quad f(-2)$
  • (c) $12$
  • (d) zero
    <btn type=“link” collapse=“a8”>See Answer</btn>

    (c): $12$

Go to

<btn type=“success”>Question 2 & 3></btn>