Question 5 Exercise 8.2

Solutions of Question 5 of Exercise 8.2 of Unit 08: Fundamental of Trigonometry. This is unit of Model Textbook of Mathematics for Class XI published by National Book Foundation (NBF) as Federal Textbook Board, Islamabad, Pakistan.

Question 5(i)

Find exact values for $\sin \theta$, $\cos \theta$ and $\tan \theta$ using the information given: $\sin 2 \theta=\frac{24}{25}, 2 \theta$ in QII

Solution.

Given: $\sin 2\theta=\dfrac{24}{25}$, $2\theta$ in QII.

We have $$\cos 2\theta = \pm \sqrt{1-\sin^2 2\theta}$$

Since $2\theta$ in QII, therefore $\cos 2\theta$ is negative.

\begin{align*}\cos 2\theta & = - \sqrt{1-\sin^2 2\theta}\\ &=- \sqrt{1-\left(\frac{24}{25}\right)^2} \\ &=- \sqrt{\frac{49}{625}} = -\frac{7}{25} \end{align*}

Also we have $$\sin\theta = \pm \sqrt{\frac{1-\cos 2\theta}{2}} $$

As $\frac{\pi}{2}< 2\theta < \pi$, so $\frac{\pi}{4}< \theta < \frac{\pi}{2}$, that is, $\theta$ lies in QI and $\sin\theta > 0$. Thus

\begin{align*} \sin\theta & = \sqrt{\frac{1-\cos 2\theta}{2}} \\ & = \sqrt{\frac{1-\left( -\frac{7}{25} \right)}{2}} \\ & = \sqrt{\frac{\frac{32}{25}}{2}} = \sqrt{\frac{16}{25}} \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{4}{5}} \end{align*} Also $$\cos\theta = \pm\sqrt{1-\sin\theta}$$ As $\theta$ lies in QI, therefore $\cos\theta >0$, thus \begin{align*} \cos\theta & = \sqrt{1-\sin\theta} \\ &=\sqrt{1-\left(\frac{4}{5} \right)^2} \\ & = \sqrt{1-\frac{16}{25}} = \sqrt{\frac{9}{25}} \end{align*} \begin{align*} \implies \boxed{\cos\theta=\frac{3}{5}} \end{align*} Now \begin{align*} \tan\theta & =\frac{\sin\theta}{\cos\theta} \\ & = \frac{4/5}{3/5} \end{align*} \begin{align*} \implies \boxed{\tan\theta=\frac{4}{3}} \end{align*} GOOD

Question 5(ii)

Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\cos 2 \theta=-\frac{7}{25}, 2 \theta$ in QIII

Solution.

Given: \(\cos 2\theta = -\dfrac{7}{25}\) and \(2\theta\) lies in QIII.

We have:

\[\sin 2\theta = \pm \sqrt{1 - \cos^2 2\theta}\]

Since \(2\theta\) lies in QIII, we know that \(\sin 2\theta < 0\). Therefore: \begin{align*} \sin 2\theta & = -\sqrt{1 - \left(-\frac{7}{25}\right)^2} \\ & = -\sqrt{1 - \frac{49}{625}} \\ & = -\sqrt{\frac{576}{625}} = -\frac{24}{25}. \end{align*} Also, we have:

\[ \sin\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}. \]

As \(\pi < 2\theta < \frac{3\pi}{2}\) implies \(\frac{\pi}{2} < \theta < \pi\), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin \theta & = \sqrt{\frac{1 - \left(-\frac{7}{25}\right)}{2}} \\ & = \sqrt{\frac{1 + \frac{7}{25}}{2}} \\ & = \sqrt{\frac{\frac{32}{25}}{2}} \\ & = \sqrt{\frac{16}{25}} = \frac{4}{5}. \end{align*} \begin{align*} \implies \boxed{\sin \theta = \frac{4}{5}}. \end{align*}

Also \[ \cos \theta = \pm \sqrt{1 - \sin^2 \theta}. \]

AS \(\theta\) lies in QII, \(\cos \theta < 0\), so: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{4}{5}\right)^2} \\ & = -\sqrt{1 - \frac{16}{25}} \\ & = -\sqrt{\frac{9}{25}} = -\frac{3}{5}. \end{align*} \begin{align*} \implies \boxed{\cos \theta = -\frac{3}{5}}. \end{align*} Now \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\dfrac{4}{5}}{-\dfrac{3}{5}} \\ & = -\frac{4}{3}. \end{align*} \begin{align*} \implies \boxed{\tan \theta = -\frac{4}{3}}. \end{align*}

Question 5(iii)

Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\sin 2 \theta=-\frac{240}{289}, 2 \theta$ in QIII

Solution.

Given: \(\sin 2\theta = -\dfrac{240}{289}\) and \(2\theta\) lies in QIII.

We have:

\[\cos 2\theta = \pm \sqrt{1 - \sin^2 2\theta}.\]

Since \(2\theta\) lies in QIII, we know that \(\cos 2\theta < 0\). Therefore: \begin{align*} \cos 2\theta & = -\sqrt{1 - \left(-\frac{240}{289}\right)^2} \\ & = -\sqrt{1 - \frac{57600}{83521}} \\ & = -\sqrt{\frac{25921}{83521}} = -\frac{161}{289}. \end{align*} Also, we have,

\[\sin\theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}\]

As \(\pi < 2\theta < \frac{3\pi}{2}\) implies \(\frac{\pi}{2} < \theta < \pi\), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin\theta & = \sqrt{\frac{1 - \left(-\frac{161}{289}\right)}{2}} \\ & = \sqrt{\frac{1 + \frac{161}{289}}{2}} \\ & = \sqrt{\frac{\frac{450}{289}}{2}} = \sqrt{\frac{225}{289}} &= \frac{15}{17}. \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{15}{17}}. \end{align*} Also

\[\cos \theta = \pm \sqrt{1 - \sin^2 \theta}\]

As \(\theta\) lies in QII, \(\cos \theta < 0\), so: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{15}{17}\right)^2} \\ & = -\sqrt{1 - \frac{225}{289}} \\ & = -\sqrt{\frac{64}{289}} = -\frac{8}{17}. \end{align*} \begin{align*} \implies \boxed{\cos \theta = -\frac{8}{17}}. \end{align*} Now \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\frac{15}{17}}{-\frac{8}{17}} \\ & = -\frac{15}{8}. \end{align*} \begin{align*} \implies \boxed{\tan \theta = -\frac{15}{8}}. \end{align*}

Question 5(iv)

Find exact values for $\sin \theta, \cos \theta$ and $\tan \theta$ using the information given: $\cos 2 \theta=\frac{120}{169}, 2 \theta$ in QIV

Solution.

Given: \(\cos 2\theta = \frac{120}{169}\) and \(2\theta\) lies in QIV.

We have:

\[\sin 2\theta = \pm \sqrt{1 - \cos^2 2\theta}\]

Since \(2\theta\) lies in QIV, we know that \(\sin 2\theta < 0\). Therefore: \begin{align*} \sin 2\theta & = -\sqrt{1 - \left(\frac{120}{169}\right)^2} \\ & = -\sqrt{1 - \frac{14400}{28561}} \\ & = -\sqrt{\frac{14161}{28561}} = -\frac{119}{169}. \end{align*} Also, we have:
\[\sin \theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}\]

As \( \frac{3\pi}{2} < 2\theta < 2\pi \) implies \( \frac{3\pi}{4} < \theta < \pi \), i.e., \(\theta\) lies in QII, we know that \(\sin \theta > 0\). Thus: \begin{align*} \sin \theta & = \sqrt{\frac{1 - \frac{120}{169}}{2}} \\ & = \sqrt{\frac{\frac{49}{169}}{2}} \\ & = \sqrt{\frac{49}{338}} = \frac{7}{\sqrt{338}}. \end{align*} \begin{align*} \implies \boxed{\sin\theta = \frac{7}{\sqrt{338}}}. \end{align*}

\[\cos \theta = \pm \sqrt{1 - \sin^2 \theta}\]

As \(\theta\) lies in QII, we know that \(\cos \theta < 0\). Therefore: \begin{align*} \cos \theta & = -\sqrt{1 - \left(\frac{7}{\sqrt{338}}\right)^2} \\ & = -\sqrt{1 - \frac{49}{338}} \\ & = -\sqrt{\frac{289}{338}} = -\frac{17}{\sqrt{338}}. \end{align*} \begin{align*} \implies \boxed{\cos\theta = -\frac{17}{\sqrt{338}}}. \end{align*} \begin{align*} \tan \theta & = \frac{\sin \theta}{\cos \theta} \\ & = \frac{\frac{7}{\sqrt{338}}}{-\frac{17}{\sqrt{338}}} \\ & = -\frac{7}{17}. \end{align*} \begin{align*} \implies \boxed{\tan\theta = -\frac{7}{17}}. \end{align*}

Go to

<btn type=“primary”>< Question 4 </btn> <btn type=“success”>Question 6 ></btn>