Search
You can find the results of your search below.
Fulltext results:
- Question 3, Exercise 9.1
- ext{ and } \theta \neq n\pi, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$ As \begin{align*} ... b{R} \text{ and } x \neq 2n, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$. GOOD =====Question 3... ta \neq (2n+1)\frac{\pi}{2}, n\text{ is integer} \right\}$ Range of $y=\mathbb{R}$ As \begin{align*} ... and } x \neq \frac{2n+1}{2}, n\text{ is integer}\right\}$ Range of $y=\mathbb{R}$. GOOD =====Question
- Question 6, Exercise 9.1
- +4+2\pi) \\ & = \cos\left(5\left(x+\frac{2\pi}{5}\right)+4\right) \end{align*} Hence period of $\cos (5 x+4)$ is $\dfrac{2\pi}{5}$. GOOD =====Question 6(iii)===... 2\pi) \\ &= 7 \sin\left(3\left(x + \frac{2\pi}{3}\right) + 3\right). \end{align*} Hence, the period of \( 7 \sin(3x + 3) \) is $\dfrac{2\pi}{3}$ =====Question
- Question 1, Exercise 9.1
- & = a+|b|\\ & = \dfrac{2}{3}+\left|-\dfrac{1}{2} \right| \\ & = \dfrac{2}{3}+\dfrac{1}{2} = \dfrac{7}{6} ... & = a-|b|\\ & = \dfrac{2}{3}-\left|-\dfrac{1}{2} \right| \\ & = \dfrac{2}{3}-\dfrac{1}{2} = \dfrac{1}{6} ... 2}{5}. \end{align*} ====Go to ==== <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 2 and 3, Review Exercise
- ext{from (1)}\\ & = \left(1+ \frac{1}{\sqrt{2}+1}\right)\cos \theta \\ & = \frac{\sqrt{2}+1+1}{\sqrt{2}+1... & = \sqrt{2} \left(\frac{\sqrt{2}+1}{\sqrt{2}+1}\right) \cos \theta \\ & = \sqrt{2} \cos \theta \\ & = R... e-ex-p1|< Question 1 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:Re-
- Question 2, Exercise 9.1
- x9-1-p1|< Question 1 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 4(i-iv), Exercise 9.1
- x9-1-p3|< Question 3 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 4(v-viii), Exercise 9.1
- 4|< Question 4(i-iv) ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 5(i-v), Exercise 9.1
- < Question 4(v-viii) ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 5(vi-x), Exercise 9.1
- p6|< Question 5(i-v) ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 7 & 8, Exercise 9.1
- x9-1-p8|< Question 6 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 9, Exercise 9.1
- -p9|< Question 7 & 8 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:ex9
- Question 2 and 3,Review Exercise
- e-ex-p1|< Question 1 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:Re-
- Question 4, Review Exercise
- -p2|< Question 2 & 3 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:Re-
- Question 1,Review Exercise
- 5$</collapse> ====Go to ==== <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:Re-
- Question 4, Review Exercise
- -p2|< Question 2 & 3 ]]</btn></text> <text align="right"><btn type="success">[[math-11-nbf:sol:unit09:Re-