Search
You can find the results of your search below.
Fulltext results:
- Chapter 02 - Sequence and Series
- s$ a positive integer such that $\left| {\,{s_n}}\right|>\frac{1}{2}s$. * Theorem: Let //a// and //b// ... /t// respectively. Then (i) $\left\{a{s_n}+b{t_n}\right\}$ converges to $as+bt$. (ii) $\left\{{s_n}{t_n}\right\}$ converges to st. (iii) $\left\{\frac{{{s_n}}}{{{t_n}}} \right\}$ converges to $\frac{s}{t}$ provided ${t_n}\ne
- Chapter 01 - Real Number System
- (a) $\left\| {\,\underline x + \underline y \,} \right\| \le \left\| {\,\underline x \,} \right\| + \left\| {\,\underline y \,} \right\|$ (b) $\left\| {\,\underline x - \underline z \,} \right\| \le \left\| {\,\underline x - \underline y \,}
- Chapter 03 - Limits and Continuity
- er //s// and //t// are in $\left\{x:|x-c|<\delta \right\}$. * Theorem (Sandwiching Theorem): Suppose th... to Z$ and $h:E\to Z$ defined by $h(x)=g\left(f(x)\right)$. If //f// is continuous at $p\in E$ and if //g... rline{f}(x)=\left(f_1(x),f_2(x),f_3(x),...,f_k(x)\right)$, $x\in X$ then $\underline{f}$ is continuous on
- Chapter 04 - Differentiation
- uch that $\left|\underline{f}(b)-\underline{f}(a)\right|\le (b-a)\left|\underline{f'}(x)\right|$. ==== Download or View Online ==== <WRAP center round download