Search
You can find the results of your search below.
Fulltext results:
- PPSC Paper 2011 (Lecturer in Mathematics)
- \left\{ \left[\begin{array}{c} 1 \\ 2 \end{array}\right], \left[\begin{array}{c}2\\ 2\end{array}\right],\left[\begin{array}{c}0\\ 0\end{array}\right] \right\}$ of vectors in $\mathbb{R}^2$ is ------------ \\ - linearly independent - linearly de
- PPSC Paper 2015 (Lecturer in Mathematics)
- - \(\lim\limits_{n\to \infty}\left(1+\dfrac{x}{n}\right)^n\) is ------------ - \(1\) - \(0\) ... \left\{\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{4},...\right\}\) is \\ - \(0\) - \(1\) - \(\inft... 3}}(x^3-8)\) in interval \(\left[-1,\dfrac{1}{2} \right]\) are \\ - \(-7,0\) - \(0,6\) - \(1... sqrt{2}}$ - \(\sec \left(\tan^{-1}\frac{2}{3} \right)=\) -------------- \\ - $\dfrac{2}{\sqrt{13
- PPSC Paper 2021 (Lecturer in Mathematics)
- eft\{\dfrac{2ni}{n+i}-\dfrac{(9-12i)n+2}{3n+1+7i}\right\}\) converges to : - \(3+6i\) - \(-3-6i\)... athbb{Q}\) - Not exist - Given \( \left(a_n\right)_{n\in \mathbb{N}}\), where \(a_n>0 \,\forall \, ... Im } f=\{e\} \) - The sequence $\left(1 / n^2 \right)_{n\in \mathbb{N}}$ is: \\ - convergent -