Search
You can find the results of your search below.
Matching pagenames:
- MATH-510: Topology
- MATH-608: Research Methodology
- 12th International Pure Mathematics Conference 2011, Islamabad (29-31 July, 2011)
- 13th International Pure Mathematics Conference 2012, Islamabad (1-3 September, 2012)
- Winter Conference in Mathematics 2010, LUMS Lahore (January 11-12 2010)
- Definitions: Mathematics 12: PTB by Muzzammil Subhan
- Ch 12: Applications of Trigonometry
- FBISE Annual 2012
- Chapter 12: Application of Trigonometry
- Chapter 12: Graph of Trigonometric and Inverse Trigonometric Functions and Solutions of Trigonometric Equations
- Chapter 12: Orbital Motion
- Question11 and 12, Exercise 10.1
- Ch 12: Key
- Ch 12: Application of Trigonometry: Mathematics FSc Part 1
- View Online (Solutions of Chapter 12)
- Question 12, Exercise 2.1
- Question 13, Exercise 2.1
- Question 12, Exercise 2.2
- Question 14 & 15, Exercise 2.2
- Question 12, 13 & 14, Exercise 3.2
- Question 12 & 13, Exercise 3.3
- Question 12 & 13 Exercise 4.2
- Question 16 Exercise 4.2
- Question 11 & 12 Exercise 4.3
- Question 12 Exercise 4.4
- Question 11 & 12 Exercise 4.5
- Question 12 Exercise 6.2
- Question 12 Exercise 7.1
- Question 12 Exercise 7.3
- Question 14 Exercise 7.3
- Question11 and 12, Exercise 10.1
- Question 12, Exercise 2.2
- Question 11 and 12, Exercise 4.1
- Question 11 and 12, Exercise 4.2
- Question 11 and 12, Exercise 4.3
- Question 25 and 26, Exercise 4.3
- Question 12 and 13, Exercise 4.4
- Question 24 and 25, Exercise 4.4
- Question 11, 12 and 13, Exercise 4.5
- Question 12, Exercise 4.6
- Question 11, 12 and 13, Exercise 4.7
- Question 23 and 24, Exercise 4.7
- Question 11 and 12, Exercise 4.8
- Question 12, Exercise 8.1
- Question 13, Exercise 8.1
- Question 8(xix, xx, xxi & xxii) Exercise 8.2
Fulltext results:
- Question 18, Exercise 2.2 @math-11-kpk:sol:unit02
- atrix.\\ $$A=\left[ \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{matrix} \right]$$ $$|A|=a_{11}a_{22}-a_{12}a_{21}$$ $$AdjA=\left[ \begin{matrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \\ \end{matrix} \right]... 1}{|A|}AdjA$$ $$A^{-1}=\dfrac{1}{a_{11}}a_{22}-a_{12}a_{21}\left[ \begin{matrix} a_{22} & -a_{12}
- Chapter 12: Application of Trigonometry @fsc:fsc_part_1_solutions
- ====== Chapter 12: Application of Trigonometry ====== {{ :fsc:fsc_part_1_solutions:fsc-1-chap-12-ptb.jpg?nolink|Chapter 12: Application of Trigonometry}} Notes (Solutions) of Chapter 12: Application of Trigonometry, Text Book of Algebr
- Ch 12: Application of Trigonometry: Mathematics FSc Part 1 @fsc:fsc_part_1_solutions:ch12
- ====== Ch 12: Application of Trigonometry: Mathematics FSc Part 1 ====== Notes (Solutions) of Chapter 12: Application of Trigonometry, Text Book of Algebr... ====Here is the list of all exercises of Chapter 12==== * [[vfsc1>ch12:view&cp=01&p=01&ch=12&fp=Ex-12-1-FSC-part1-ver1|Exercise 12.1]] * [[vfsc1>ch
- View Online (Solutions of Chapter 12) @fsc:fsc_part_1_solutions:ch12
- ====== View Online (Solutions of Chapter 12) ====== Notes (Solutions) of Chapter 12: Application of Trigonometry, Text Book of Algebra and Trigon... ====Here is the list of all exercises of Chapter 12==== * [[mdoku>fsc:fsc_part_1_solutions:ch12:viewer&cp=1&p=1&ch=12&fp=Ex_12_1_FSC_part1|Exercise 12.1]] * [[mdoku>
- Question 8, Exercise 2.2 @math-11-nbf:sol:unit02
- \begin{align*} A &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}\\ B &= \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix}\\ AB &= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bma
- Question 13, Exercise 2.1 @math-11-kpk:sol:unit02
- tion==== $$A=\left[ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ ... gin{matrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33... )$$ $$A+A^t=\left[ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ ... gin{matrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33
- Question, Exercise 10.1 @fsc-part1-kpk:sol:unit10
- n \alpha =-\dfrac{4}{5}$ and $\cos \beta =-\dfrac{12}{13}$, $\alpha $in Quadrant III and $\beta $in ... lpha$ is in 3rd quadrant, \\ $\sin \beta=-\dfrac{12}{13}$, $\beta$ is in 2nd quadrant. We have an ide... quadrant, \begin{align}&=\sqrt{1-{{\left(-\dfrac{12}{13} \right)}^{2}}}\\ &=\sqrt{1-\dfrac{144}{169}}... \beta \\ &=\left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right)+\left(-\frac{3}{5}\right)\left(\frac{
- Question, Exercise 10.1 @math-11-kpk:sol:unit10
- n \alpha =-\dfrac{4}{5}$ and $\cos \beta =-\dfrac{12}{13}$, $\alpha $in Quadrant III and $\beta $in ... lpha$ is in 3rd quadrant, \\ $\sin \beta=-\dfrac{12}{13}$, $\beta$ is in 2nd quadrant. We have an ide... quadrant, \begin{align}&=\sqrt{1-{{\left(-\dfrac{12}{13} \right)}^{2}}}\\ &=\sqrt{1-\dfrac{144}{169}}... \beta \\ &=\left(-\frac{4}{5}\right)\left(-\frac{12}{13}\right)+\left(-\frac{3}{5}\right)\left(\frac{
- Question 2, Review Exercise @math-11-nbf:sol:unit08
- 2 \theta&=\frac{144}{169} \\ \cos \phi&=\pm\frac{12}{13}\\ \end{align*} As $\phi$ is acute, so $\ph... This implies $\cos\pi >0$, thus $$\cos \phi=\frac{12}{13}$$ As, we have \begin{align*} \sin(\theta -\p... sin \phi\\ &=\left(\frac{3}{5}\right) \left(\frac{12}{13}\right)-\left(-\frac{4}{5}\right) \left(\frac... 2 \theta&=\frac{144}{169} \\ \cos \phi&=\pm\frac{12}{13}\\ \end{align*} As $\phi$ is acute, so $\ph
- Question 2, Exercise 2.3 @math-11-nbf:sol:unit02
- The elements of \(R_1\) are \(a_{11} = 3\), \(a_{12} = 2\), and \(a_{13} = 3\). Now we find their cor... } (5 \cdot 0 - 1 \cdot 1) = (1) (-1) = -1 \\ & A_{12} = (-1)^{1+2} \left|\begin{array}{cc} 4 & 1 \\ 2 ... ant: \begin{align*} \det(A) &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} \\ &= 3(-1) + 2(2) + 3(-6) \\ &= -3 + 4 - 18 \\ &= -17 \end{align*} Thus, the
- Exercise 6.3 @matric:9th_science
- 2}, (x\neq 0)$\\ (iii) $\frac{1}{16}x^2-\frac{1}{12}xy+ \frac{1}{36}y^2$\\ (iv) $4(a+b)^2-12(a^2-b^2)+9(a-b)^2$\\ (v) $\frac{4x^6-12x^3y^3+9y^6}{9x^4-2... {1}{x^2}\right)^2-4 \left( x+\frac{1}{x}\right)^2+12,(x \neq 0)$\\ (viii) $(x^2+3x+2)(x^2+4x+3)(x^2+5... ) \end{align}$ (iii) $\frac{1}{16}x^2-\frac{1}{12}xy+ \frac{1}{36}y^2$\\ **Solution:**\\ $\beg
- Khuram Ali Khan
- , Advances in Inequalities and Applications, 1 (2012), No. 1, 12-32, (Published on July 9, 2012). ([[http://scik.org/index.php/aia/article/view/347|Link]]) - Laszlo... ights, Proc. A. Razmadze Math. Inst., vol. 158 (2012), 33-56. ([[http://www.rmi.ge/proceedings/volumes
- Key to MCQs by Muhammad Imran Qureshi @fsc:fsc_part_1_mcqs:mcqs_by_muhammad_imran_qureshi
- | | 6- D | 7- A | 8- B | 9- C | 10-D | | 11-A | 12-B | 13-D | 14-A | 15-C | | 16-A | 17-C | 18-C | 1... | | 6- B | 7- D | 8- C | 9- A | 10-B | | 11-B | 12-C | 13-A | 14-C | 15-A | | 16-B | 17-D | 18-B | 1... | | 6- D | 7- A | 8- A | 9- B | 10-B | | 11-C | 12-B | 13-C | 14-B | 15-D | | 16-D | 17-C | 18-B | 1... | | 6- C | 7- C | 8- B | 9- A | 10-B | | 11-B | 12-A | 13-B | 14-C | 15-A | | 16-C | 17-B | 18-B | 1
- Question 3 & 4 Exercise 4.3 @math-11-kpk:sol:unit04
- rac{66}{2}(25+350) \\ \Rightarrow S_{66}&=33(375)=12375 .\end{align} =====Question 4===== The sum of ... a+d)&=36 \\ \Rightarrow 3 a&=36 \\ \Rightarrow a&=12\end{align} Now by the second condition, the sum o... \Rightarrow 3 a^3+6 a d^2&=6336 \\ \Rightarrow 3(12)^3+6(12) d^2&=6336 \text { as } a=12 \\ \Rightarrow 3(1728)+72 d^2&=6336 \\ \Rightarrow 72 d^2&=6336-
- Question 9 Exercise 7.2 @math-11-kpk:sol:unit07
- greatest term in the expansion $(x-y)="$ when $x=12$ and $y-4$. Solution: When we put $x=12$, then the give becounes $$ \begin{aligned} & \left(x \quad y=20(12-y)^{20}\right. \\ & =12^{2 n}\left(\begin{array}{ll} 1 & \frac{y}{12} \end{array}\right)^{31} \end{al
- Chapter 12: Graph of Trigonometric and Inverse Trigonometric Functions and Solutions of Trigonometric Equations @fsc:kpk_fsc_part_1